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Abstract

To describe the equilibrium equations of thin walled open section bars the co-ordinates
of centre of shearing are generally used. On the other hand, the equilibrium equations of closed
section bars mostly are described by the co-ordinates of centre of gravity.

Modelling simultaneously open and closed section bars in a framework it is expedient
to apply the same type of co-ordinates. For this purpose the co-ordinates of centre of gravity
are suitable.

For elaboration of equilibrium equations of thin walled bars in terms of co-ordinates
of centre of gravity the principle of total potential energy is applied.

Introduction

Application of closed and open-section bars are common in skeletons
and frameworks exposed to dynamic loads (skeletons and frameworks of build-
ings, technology equipments, vehicle undercarriages, etc.). To describe the
equilibrium equations of open section bars the co-ordinates of centre of shear-
ing are generally used. On the other kand, the equilibrium equations of closed
section bars can generally be described only by the co-ordinates of centre of
gravity. Modelling simultaneously open and closed section bars in a frame-
work, it is necessary to apply the same type of co-ordinates. For this purpose
the suitable ones are the co-ordinates of centre of gravity.

The motion (equilibrium) equation can be directly written on mechanical
considerations, just as by using the total potential energy functional referring
to the given single selected bar. This latter method has noteworthy advantages.

Partly, together with the motion equation, also boundary and initial
conditions are obtained so to say automatically that are not simple in this case,.

In this paper the total potential energy functional is applied for elabora-
tion of equilibrium equations of thin walled bars in terms of co-ordinates of
centre of gravity.
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1. The principle of total petential energy

Obviously, the so-called direct generalization of the scalar product (bi-
linear form) utilized for developing variational principles in linear elasto-
statics in the form

fo
[, u,] = S f (X, £)u,(x, £)dx ds (1.1)
oV

is not symmetric about term [Ju/o%, u], therefore operators comprising operand

9. . . . .
o e not of the potential type, hence in general are unsuitable for handling

initial conditions of linear elasto-dynamies. [In Eq. (1.1)], V is a single coherent
three-dimensional open domain, o <t <, a confined time interval, while
(X, t), uy(x%, t), u(x, t) are quadratically integrable functions.

Again, evidently, sealar product

)

{uy, u,> = f g u,(x, t)u,(x, 5y — t)dxdi (1.2)
7

is symmetric about term (ou/dt, u), that is, it perfectly suits development of
variational principles of linear elasto-dynamics.

Among relevant research, the most important ones are those due to
Gurtin [2, 3], Tonti [4]. Oden and Reddy [5] and to Reddy [6, 7]. Gurtin
was the first to apply scalar product (1.2) (convolution) for developing linear
elasto-dynamic variational principles implicitly containing the initial condi-
tions. Tonti demonstrated scalar product (Zu/ét, u) to produce a symmetric
variational prineiple referring to the thermal conduction equation.

Variational principles published by Oden and Reddy explicitly contained
initial conditions.

In linear elasto-dynamics, like in elasto-statics, variational principles
referring to the total potential energy, the complementary energy and the
so-called Reissner variational principles are of practical importance. Actually,
the principle of total potential energy will be involved, with the following so-
called total energy functional:

fo

~

fy
@(u) = —;—J fg(x) u(x, t)u(x, t, — £)dxde - ;TJJ [E(=) : e(x.8)] ¢
Y 0V

te (1.3)
telx, tp — )dxde — 5 f (=, t)u(z, t, — t)dxds —
0V

- OfAy iz, t)ulx, 1, — f)dxds — ‘7( o(x) V(=) u(x, t,) dx

where:
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0L confined time interval;

x = x(x,y,z) coordinate of place of a point of the given solid;

V domain occupied by the given solid;

A boundary (surface) of domain V;

A, part of surface 4 with given surface forces;

u = u(x,t) displacement fector field;

o = p{x) volume intensity of mass distribution;

E = Ex) fourth-order tensor of material characteristics;

e = e(x,1) strain vector field;

f = f(x,1) intensity of volume forces;

t = t(x,1) intensity of prescribed surface forces on surface A;
v0 = vi(x) initial velocity distribution specified for the given solid;
(.) = 80) (symbol of partial derivation with respect to t);

ot
symbol of twofold scalar multiplication.

Functional 0(u) involves the following a priori conditions:

o(x, t) = E(x) : (s, 1) (1.4

el(x, t) = %[Vn(x, t) + (Va(, 1)) 7] (1.5)
u(x,t) = a(x, ), €A, (1.6)

ul(x, 0) = u'(x), x¢V, 1.7)

where:

d = 6(x.1) stress tensor field;

V(.) = grad(.);

A, part of surface A where displacement is given as boundary
condition, 4 = A, U 4,, A;,N 4, =@ (¢ is symbol of an
empty set);

u(x, t) specified displacement over surface A4 ;

u’(x) specified initial displacement over domain V.

(1.4) yields the material law, while (1.5) to (1.7) provide for the kinematic
possibility of displacement wu(x,t). Deductions for funetional @(u) and for
conditions (1.4) to (1.7) are fourd in [10].

2. Assumptions for writing the moticn equaticn
2.1 Presumed displacement field

The open-section bar has to be modelled as a one-dimensional continuum.
The bar is assumed to be prismatic, slender, of a homogeneous, isotropic
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Fig. 1

material. (No assumption of an orthotropic material causes difficulties.) Let
the bar be exposed to external forces and moments seen in Fig. 1, and by
volume force

fie 207 = (5305 0, 057, 7). £l 25.0) 2.1)

In conforn:uty with symbols in Fig. 1, IV is force along the bar, QV Q are
shear forces, _Mx the torque, BI}, _Mz are bendlng moments and B the so-called
bimoment. Axes y and z are assumed to be principal axes of inertia of the bar
cross section,

T(x, ¥, z7) is the torsion center for the cross section of coordinate x.

Displacement of an arbitrary bar point is obtained from

u = (ux(x, ¥y 5,5 t), uy(x, ¥y 5 1), u(x, ¥, 3, t)) (2.2)
uy(®, ¥2 7 1) = tp(, 1) — wr(x, 1)y — wir(x, 1)z — @'(x, ) or(y, 2), (2.2.a)
uy (%, ¥, 5, t) = uyr(%, t) — (5 — zp) p(x, 1), (2.2.b)
u(%, ¥, 5, 8) = wp(x, 1) + (y — 7)o, 1), (2.2.0)
where:

u.(x,t), ... displacement coordinates of an arbitrary point (x, ) of
the (straight) torsion axis;
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,_98(.) angle of rotation of the cross section of coordinate x and

()= dx normal to the ¥ — x axis about the torsion axis (positive

o(x. 1) if the vector of rotation points to the positive direction
of the x-axis);

oy, = warping rate referred to torsion center T (determined

clock-wise on a surface directed by an outer normal
unit vector pointing to the negative direction of the x-axis).

2.2 Conditions for equilibrium equation

To desecribe the equilibrium equation by co-ordinates of centre of gravity
it is necessary to detail the relationships among the two types of warping
characteristics. Denote letter T the torsion (shearing) center and S the gravity
center of a cross section of a prismatic bar. Let w,(y, ) warping rate referred to
torsion center T and wg(y, z) warping rate referred to gravity center S.

According to denotes of Fig. 2

Fig. 2
P,z

or(y.5) = | o, 5)dndl, (2.3.2)
Py, 2)
P(v,2) ]

os(y.2) = | sl dndl, (2.3.b)
P o3, 20)

where Py(y,, 2,). P(v, z) are fixed points on curve U. It can be verified that

{ oy, s)ydyds = 0, (2.4.2)
A

Qﬂ oy, z)zdydz = 0, (2.4.b)

o
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where letter 4 denotes the area of the cross section of the bar and point
Py(v4 zo) is chosen that equation

‘j‘ wp(y. z)dydz = (2.4.¢)

is satisfied. Seeing that axes y and z are the main axes of the cross section of
the bar the conditions

f ydyds = 0. S zdvdz = 0, Y yzdvds = (2.5.a—c¢)

A A
are satisfied, too.
On the hasis of the previous relationships it can easily be seen that
oy, 5) = ws(y. 2) — ¥z — zo) + z(y — ¥o)- (2.6)

Supposing that eq. (2.4.c) is satisfied and one of the axes ¥ and z is symmetry
axis of the cross section of the bar. In this case z.y, — y;5, = 0 because, or
zp = 0 and z5 = 0 (y is symmetry axis) or ¥, = 0 and y, = 0 (s is symmetry
axis), Using this condition it follows from eq. (2.6) that

wg(¥. 2) = wp(y. 5) — 20 =+ vz (2.7)

Utilizing equations (2.5.¢) and (2.7):

A\ oy, 5)ydydz = —z 1. (2.8.a)
Ag wg(y. 2)zdyds = yp I, (2.8.b)

where:
I.. = S Fdyds, I, = ( y2dyda.
A

¥V
A

According to equations (2.4.c) and (2.5.a—Dh)

AS‘ wg(y, z)dydz = 0. (2.9)

Moreover, according to equations (2.4.a—b) a

B
jo ¥
,l\
|

I,=1,, ~yI, + =L

g : iy 2zt

(2.10)
where

oy

I"): = s oly. zPdyds, I, = \ oy, 2 dy d=.
A A

2.3 Assumed displacements in terms of co-ordinates of gravity

After substituting co-ordinates of centre of gravity (x,0,0), 0 << x <l
for equations (2.2.a—c) the equations
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w (%, 1) = u (x, 1) (2.11.a)
u’yT(xv t) = e t) — zrg(x. 1) (2.11.b)
(. 1) = w {x. 1) + voq{x, £) (2.11.¢)

are received, where w,(0, 0) = 0 by definition. Substituting right hand side
of equations (2.11.a—c) for equation (2.2.a—¢) and utilizing equation (2.7).

ux, vy, 5 t) = ulx 1) — u;,s(x, By — ulfx. )z — oy, 5)¢'(x, 1), (2.12.a)
uy(x, V. 5 t) = ll),s(x¢ 1) — zip(x. t), (2.12.b)
wfx, v, z, 1) = w,lx. 1) - yo(x o). (2.12.¢)

2.4 Boundary and initial conditions

Surface loads (stresses) specified for bar ends are described by equalities:
t0,y, zt)7 = (—a(0,y, =1); ——:E'._._\.(Oe Vs 3 1), —71.(0, v, 5 1)), (2.13.a)
iy, 50" = (6L y. % 1), Tyl y. 5 1), 70,5, 5 1)) (2.13.b)

{Negative sign in (2.13.a) refers to the surface of an outer normal pointing to

the negative direction.) Stresses £(0. v, z, 1) and (L, y, z, t) are assumed to arise

as sums of stresses corresponding to elementary ones acting on the bar.
Initial velocity distribution has to be specified according to the assumed

distribution field u (2.12.a—¢), that is:

)

z8

vf,s(x) — =x9(x). vlp(x) L yx(x)) (2.14)

vo(x, v, 2 0) = (1;33(.1") — 'v;f)s(x)y — v (%) s — 2 =)oy, ).

where:

0 ) 0 ’ . el .
Ve Vg Vo 2%, vk, v and »" are initial values at time t = 0 of velo-
1 zs 3 zs

cities and angular velocities u,, Upgs Upgs @, u_;,s, u,, and ¢ (or of their deriva-
tives with respect to x).

Obviously, also kinematic boundary condition u(x, t) and initial displace-
ment u%x) in conditions (1.6) and (1.7) have to be specified in conformity
with the assumed displacement field (2.12.a—¢).

3. Establishment of the motion equation relying in the
prineiple of total potential energy

For the sake of understanding, functional g(u) will be written in the
conerete form for the examined problem term wise, and after simplifying nota-
tions, each term will he summed in conformity with (1.3).

D=
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Expanding term for the kinetic energy by means of Eqs (2.12.a—c¢),
(2.8.a—b) and (2.9):

:
iy

Ola), = = J J o) iu(x, £)i(x, £, — f)dxdt —
76
to !
=3 | | ] ettt — o 0y — it )z — §lo Doty 91
00 A
Julxty—1t) — u},q(x to— 1)y — (%, 8 — 1)z — @' (%, t, — oo (y, 2) ] - dy dzdade -
th 1
+%_J J ofu(x. 1) — =q(x, 1)1 [iye(x: 1o — 1) — 5q(x, 1, — 1)]dy dzdxds +
Too A
ol
3 [ [ et ) + e 01 il 20 — 0+ 3010 — )]dy dsdade =
00 A
bl
:%QAJ J (X5 B) U (. 25 — t)dxde
00
o1 (3.1)
] A
~}——£— Q.—iJ J w (%, 8)uy(ys 1o ydadt
5o
t 1
-+ % ol,, J‘ [uys(x, 8) — 2790 (x, t)]z};,s(x, fy — t)dads +
- 00
b1
- —2~ oA fms(x i), (%, g — 1) dads -
o 1 0

_l‘
2o | b
=

b
;‘—1

j [as(. 1) + y7 (2 0)]iy(, 2 — 1) dude +

t,l to 1

_;-% ff o(x, ) g(x, ty — t)dxds “——OJJ [1,,¢(x1) —

— L.z u(x, 1) + Iynyu'zs(x, t)]dxdt

where:
p constant, mass distribution intensity;
A bar cross section area;

I,, and I, second-order moments of inertia about axes y and z of the

bar cross section;

Iy=1I,+1L,.
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The term for strain energy is expanded to:

B(a), — % J f [B(x) : o(x, 8)] el to — 1) dxdt =
oV

1y 1
1 ) » ” "
=5 B | | ] it ) = st 0y — w2 — 5w D3, 9] -
00 A

(s tg— 1) — w (e, tg — B)y — u(x, £y — )5 — @ (%, £, — B oo (v, )] - dy dzdedt +
t 1

- Ti—ITGJ‘J @ (%, 8) @ (x, 1, — £)dwdt =

o
t 1
1 i . » ”

+ S EL. 1 | [, ©) — 276" (%, ) ule, o — 1) dxde +

oo

o1
1 » " »

-+ EEI)'yjf [t,(%, t) -+ v (%, 8)Ju(x, tg — t)deds -

o0

t, 1
i 1 " | ” x |
o E E [_I:::T uys(xv t) E ynyu:s(xﬂ ‘) e
00
-+ Iw,‘P”(xa )] (x, t, — t)dxdt +
t 1
—!—%IPTG f j o' (5, £) ¢ (x, £, — t)dds (3.2)
00
where
E* E*
=—-—, G=————, E* is the Young’s modulus; and vy the

11— 2(1 +v)

Poisson’s ratio;

I, — second-order moment of Saint Venant torsion of the bar cross
section;

g, = du,(x, ¥y, z, t)/ox

Term volume force work is expanded by means of (2.1) and (2.12.a—c).
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o 1 I
O(u;) = é f(x t)u(x, t, — t)dxdi = S so }%f(x, vy, s tydydsu(x, ¢, — 1) —
L ,

‘/’

-r_5fx(x, v,z t)ydydz u;,s(x, By — t) — S folx, v, 5 t)zdyvds w, (%, ty — £) —
A
- \‘ fulw y. s oy, H)dydsg(x, 1y — 1)
+ [ Aoy, 5 ) dydsu e to— 1) — [ fiwy. 5 D) dydsuylnto — ) +

[ Doy ) = e 2 0y eyt — t>} drds =
tn
g [q\ Xy t) u\s("“’ tO - t) —l_ Qv(} ) (x‘ tO - t) + m:(xf t) u‘;'s(x‘ﬁ to - t) _YI—

+ g, B, 1y — £) — my (. tul(x, ty — 1) +
e, D 1o — 1) — my (3. )9 (5. 1o — 1)} dxde (3.3)

introdueing simplifying notations for integrals on surface A, with the following
meaning:

g 9, . are intensities in directions x, y and z of volume forces acting
on the bar modelled as an one-dimensional continuum (forces acting on unit
bar length). m, and m, are intensities of bending moments from volume forces
about axes y and z, m, is intensity of the torque due to volume forces and
referred to the torsion axis of the bar, while m, (x, t) is intensity of the warping
moment due to volume forces (moments acting on unit bar length).

The term for the work of surface forces will he expanded by means of
(2.12.a—c) and (2.13.a—Db).

fy

Dlu), = X S t(x, y, 5 t)u(x, v, 5, 1, — £)dydsde

v Ag
1 .
= { [ [{0, 5,z 6)u(0, y, 5, t, — 1) +
0 A
+ il y, = t)ul,y, 2z, t, — 1)]dydsde
fu
= [ {— 5“0-(0 ¥ 5 t)dydzu (0,8, — 1) + [ 5(0, ¥, =, t)ydydsuyy(0, 2, — 1) +
0 A
{ (0, ¥, 2, t)zdydzu, (0, 1y — £) + | 5(0, 5 oy, z)dydz@' (0, t, — t) +
A
( 0, y, % t)dydzu, (0, tg — ) + [ T.(0, ¥, 2, t)dy dzu (0, £ — 1) —
A

— (Twxl0, 3, = 1)y — T (0. 5, 5, 0) 5) dy dz (0, 15 — 1) +

+ {6y, = )dydsuy(l, t, — t) — g(z ¥, %, 1, t)ydydzu »S(l ty —t) —
A 3

— (5ly. = t)zdyd.,u_,s(l, to — 1) —
A' N . B . Ll . LT
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— Aj ol y, z Yoy, 5)dydz @' (L ty — t) —
._Ag Tl 3 = ) dy dzuyy(l 1, — t) —Af Tl s 2ty dy dsuy (I, £y — £) -+

-+ Aj (Tl 3o 5 )y — Ty (L ys 5 1) dydz) g(l, 2 — 1) det =

= (¥ Dl o — J52h —

1

— [0,y Dy tg — DETh — [, o) uile, 1 — 1)J3T4
- [a:s(x7 t) u‘zs(x5 Ip — t)]izf) -+ ["ﬁy(xt t) u’.".s(x7 Ly — t)]ng) :

+ M, 1) (st — O1Zh — [By(x, 0)¢'(x, 10 — 0137 (34)

Here A, means the surfaces of cross sections at points x = 0 and x = L.

Simplified symbols introduced for integrals on surface A are interpreted
in Fig. 3 and the relevant comments.

Bending moments ﬂy(O, t) and ./f’Iy(l, t) are affected by negative sign
since assumed displacement (2.) involves a bending moment pointing to the
negative direction of the y-axis.

The term for the initial condition specified for velocity distribution is
expanded by means of (2.12.a—c) and (2.14).
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O(w), = [ o(x)vo(x)ulx, to — )V =
v

I
— [ [{el%) — vy — 20)z — X oyly, 9]

[ 1) — (s 1)y — Ul 1)z — @'z to) o (y, )] +
() — 520() gyl 1) — =gl 10)] +
+ [oal) 4 30 syl to) + v, )]y deds —

1
= f {od vi(w)u(x. to) +

-+ g[‘lvg',s(x)u (%, 1) + ( cfg(x) — :T/ )u‘q (x,t,) +
4+ oA (W) u(x, to) + ol (vi(x) - yrx(x))ulx, 1) +
=+ QIpS‘ 0("”) ¢(1 fo) i [ ~~"T ys(x) + Y TUJ(T) +

# ()] (2. 1o)} dw (3-5)

Before writing funectional QD(u) in conerete form, let the following simpli-
fied notations be introduced:
f 1

& hyp= | | glx, t)h(x, t, — t)dxds (3.6.a)
96
(o >y = | Lo )G 10 — O)T2=bdl (3.6.0)
B
!
{g, hyy = oj g(x, 0)h(x, 1) dx (3.6.¢)

Utilizing (1.3), (3.1) to (3.5) and (3.6.a):
( ) = O(u),, + D(u), + D(w); + D(u), + D(u),, =
= 2 oAb 1+ BACU i) — G g —
— (N ), — 04 D0 +
5 04l -+ 0l — 216 W +
+ 2 ELu), — 570/, wp —

N -~ o~
- <qys uy5>R - <m23 uys>R + <sta u’ys>Ad + <M29 u_;s>Ad -

- QA<U;?'S’ uys>0 - QIzz<v;?s — Ar %’o, u;s>0 =+
1 L . 1 .y vy e
+ E QA\uzs’ uzs>R -+ ‘é— QIyy<uzs + Yres uzs>R -+

1 ” ” "
+ 5 ELy Gy + 510" wldp —




EQUILIBRIUM EQUATIONS OF THIN-WALLED OPEN SECTION BARS 25

— i Uy <y WD g (Qu ) 2y — (M ) 4, —

270 5’0 4,
- QA<UZS’ u‘zs>0 - QIyy<bzs 4y u’zs>0 =+

1 R o A 1
; ? QIps/rF ¢/R + 5 ol P I;z:Tu_\-s e I_\;_v}'Tugge Por T
1 " " .
+ EI”G ¥ PR+ o E‘I 0P I:zzTuys - Iynyuzs? PR —
— {my, @rp + Iy, o — (M @D, + (Bo ¢4, —
— o, (% ¢oy — ol — I._~TL‘S -+ Iy;,:.')’TU)zgv o 3.7)

with coherent terms (scalar preducts) side by side. In Eq. (3.7) terms where
the second factor is the same — irrespective of deriving with respect to place
and time — belong together.

Displacement u(x, t) witk the minimum of functional @(u) is known to
meet also the motion equations wanted, that is, relationships for this displace-
ment u(x, ¢) vield the motion equations wanted.

To establish the equation for the minimum place of functional @(u),

6, du) = 0 (3.8)

has to be applied, where 0@(u, du) is first variation of @(u) with respect to u.
From (3, 7):

0P(u, du) = (oduy oty + Eduy dudp — (ge Otdr — N e a, —
— (oAl duydg 4 {oduy, duydp + (ol (uy — 27¢") Suydp +
(B (ujs — 57¢"), Swldp —
— gy, Oty — {my, dugop + <éys, Suyd s, + <_717172, Sty ay —
— (g_rivg,s, 511),s>0 — <gIzz(v;g — zpx0, 5u;s>0 B
+ o4 itzse 5iLzs>R + Lol (ufs + yrg')s duldp +
+ KEL(uys + yro"s dulop —
— {q, Su,op + <my, duop + 5<QZS, du,op — <M Ousd>a, —
— <Ay, up — <9va(’b”0 + yr#'%), Ouo
+ <QIps¢’ 5¢>R + <9Iw,¢' - OI~~~T s T 91\!\./ Tu‘zs’ 6‘?’ PrT
+ <GlL,¢', 8¢">r + <EIL, 9" EI‘*‘*“‘T”}S + EIL, yruze 69"r —
— (s 0>g + (M 00" g — (M, 89> 5, + (B 59" 4, —

- <9IPSH ? 6¢>0 - <QIw, - QIzzzTUys + QIyny”’z(s)v 5?7’>0 (3'9)
Possible reductions in (3.9) need transformation relationships
@ hor = —<8 o + <& k) 4p (3.10.a)

(g byp = <& Bdg + <& kYo — <hs 80 (3.10.b)
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o
[=3}

Validity of (3.10.a—b) is understood from defining equality (3.6.a), according
to rules of partial integration with respect to place and time coordinates
x and ¢, resp., and defining equalities (3.6.b—c).
Conveniently utilizing equalities (3.10.a—b) it is:
0D(u, du) = (oAt — Eduly — gu buydp + (EAduly — N, dud,, +
+ (oAdu,, — QAvXS, du, o +
—+ \/9-’4 ﬁ_vs - QI..,(H,/C,S - :Téb”) 'TL EI'»(U’;Y‘S/ - ZT(p’V) - qy - m;, 6uys>R =+
+ (gIzz(ii', —z7¢") — EL(u}{ — 57¢"") — m, + Qs Su, 4, +
+ (EI (W — z¢") + 1[ s QUL 4, + CoA(uys — vy). du, o +
-+ \QI::[(u - "T(p ) - (1’ — Ap¥# )-, 5”;'s>0 -
—+ <Q.4 ii.s - ‘DIV‘J(uzs T ¥ (,l;”) EI\,},( + _)'T’f/’lv) — gy — m';e 5u'ys>R ":"’
—+ <9I} (i 3T’P ) — (u’" yre') + m, + Q.50 6uZS>Ad .
+ <EI\y(u "L Yre ) - JI 6uzs>.4¢ + <Q_4(l.t;.5 — Ugs), 6uzs>0 +
+ <ol [( s + yr@') — (V4 yp")]s Ol +
_L <OIpS¢ - OI(DSQD” + QIZZZTIE;"S - QIyy.yTﬁgS + Est(p’V -
— EI v+ EI

=771 \’S

f = 16y’ — me — ml, dge +

w¥r

+ <ol ¢" — elzriiys + ol ypiiyg + m, — ELg"" — EL zrud +
. EI_\,),yTu;;’ e IPTG(p — IWX, 0Py A, + <EIm5(P” — EI__.,,_u}S 4

- ELyrul, -+ By 09" 4, + <ol (@ — #), 09>y + <oL, (' — #"°) —

— ol zr(uy, — vj0) + L yr(ul, — vi9), 60", (3.11)

(Since kinematically possible variations of displacements and of anguar rota-
tion du (x,t, —t), ... resp.. (and their partial derivatives with respect to
place coordinate x), meeting this restriction, may be arbitrary, making use of
(3.11), (3.8) yields the wanted motion equations:

pdiifx, t) — EAul(x, t) = q.(x,¢) (3.12.a)
oA iy (%, 1) — ol (i (x. 1) — z7¢"(x,8)) +
+ EL_(u}¥ (%, 1) Tcp'v (x, 1)) = q,(x, 1) — my(x, 1), (3.12.b)
M%ww—ﬂauww¢wwum+E%@ﬂaw+
+ vrpV(x, 1) = g (v, 1) + m(x, t) (3.12.¢)
DIPS(p(x t) — DIUsq/"(:L t) + ol zriiyx. t) — ol yrii (x. 1) —
— I,Gg"(x,1) + El 0"V (x,1) — EL zpu}¥(x, 1) +
-+ EI, yru ull (. t) = my(x, 1) + m, (x, 1) (3.12.d)
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where 0 < x <l and 0 <t < ¢,; boundary conditions
EAu/(x.t) — N(x,t) = 0 (3.13.a)
o fiiy(x. t) — sr¢ (x. 1) — EL[uJ(x. 1) — z7¢"""(x. 1) —
— m(x, 1) + Qulx, 1) = 0 (3.13.h)
EL[ul(x, 1) — 2r¢"(x,1)] + M (x, ) = 0 (3.13.c)
ol li (%, 1) + yrox, )] — EL [u(x.8) + yr¢' ' (x. 1)] +
+ myfx, 1) + Qufx,t) = 0 (3.13.d)
EL(ulx. 1) + yr¢'(x. ) — M(x, 1) = 0 (3.13.¢)
01,3 (x. 1) — oLzpiify(x. 1) + ol yritl(x, 1) +
+ m,(x.t) — EL,¢"(x.t) — Elspu{(x, 1) + EL y ul(x, ¢) +
+ LGy (x, t) — M (x,1) = 0 (3.13.5)
EL,¢"(%1) — ELspulx, ) + EL yrul(x,1) + B(x,1) = 0 (3.13.9)
where x = 0, or x = I, and 0 <{t <[ t,, as well as initial conditions
(%, 0) — 12 (x) = 0 (3.14.a)
(%, 0) — 0(x) = 0 (3.14.b)
i, 0) — 2rg'(x, 0) — [W3x) — 2,2 (x)] = 0 (3.14.c)
1, (%, 0) — v8(x) = 0 (3.14.d)
ify(x, 0) + yr'(x, 0) — [oi2x) + ypx'@)] = 0 (3.14.0)
@(x, 0) — #(x) = 0 (3.14.f)
L[5 (x, 0) — #"(®)] — Lzr[ig(x, 0) — vi%x)] +
+ Lyyrlug(x, 0) — vig(x)] = 0 (3.14.g)

where 0 <Z x < L.
4. Conclusions

Motion equations of closed or solid section bars mostly are described
by the coordinates of centre of gravity. Simuitaneously modelling open and
closed section bars in a framework it is expedient to apply the same type of
co-ordinates. For this purpose the co-ordinates of centre of gravity are suitable.

For elaboration of equilibrium equations of thin walled bars in terms of
coordinates of centre of gravity the principle of total potential energy is applied.
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