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Abstraet

The paper presents the statistical problems (unbias, consistency, ete.) of a nonlinearity
degree for vehicle system dynamics. Using this nonlinearity degree estimated from measured
inputfoutput data one can separate the linear behaviour of the wvehicle vibrating phenomena
from the nonlinear one.

Intreduction

Recently, research on the dimensioning of vehicle frames has come to the
foreground of interest. Actually, a primary goal of research has heen to caleu-
late dynamic assessment of vehicle frames. This is conditioned, of course, by
the analysis of the so-called “permanent’ vehicle operation by relating traffic
and vehicle design processes, by establishing the fundamental load and stress
statistics of the vehicle. This fundamental stress arises from the stochastic
road excitation of the vehicle driven on a rough roadway.

For determining two-dimensional stress distribution function [1] and
level intersection numbers typical of the expected stress [2], stress statistics
apply the spectral method, easy to handle, assuming linearity of road excita-
tion/frame stress models. This assumption generally provides for a close ap-
proximation of real processes in cases on high-quality road types and medium
travel speeds. For poorer roads and generally higher travel speeds, however,
noulinearities due to wheel bouncing, to progressive spring characteristics, and
to asymmetric vibration damping effects prevent the linear model from being
considered as correct.

It is therefore essential to determine “‘ranges” (as a function of road
profile standard deviation and of speed values) where the linear model is either
eorrect or can be considered as a fair approximation. There more so since, if
the linear of linearized model is useless, the estimation process may become
extremely complex, increasing the volume of computations by orders of mag-
nitude.

Coefficients have been published for the characterization of closeness of
static or dynamic relations between data sets or signal pairs, or even its lin-
earity in no-noise cases. This paper will apply the coefficient deduced from a
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dispersion and correlation function for deseribing the road excitation/frame
stress model linearity [3] and the analvses will involve confidence of the as-
sessment of this coefficient.

Stating the problem

The autobus is put to vibration by the stochastic input exeitation pro-
cess acting on the four wheels at time t: x, = (x7. . ... x}) corresponding to the
road profile/speed process to he represented. Let stress processes 14 (nearer, the
strain process in linear correlation) in the bus frame be measured at points
j=L12, ..., M.

Random road profile process w, = (1('1; ... w) vs. travelled road —
generally accepted in publications in spite of its boundedness — is taken at a
fair approximation as a steady Gaussian process of expected value [4] — m,, =
= (0—, with a continuous, integrable power spectrum ®, (o), thereby, at an
arbitrary fixed speed v, the random excitation process vs time x; is fairly
apoproximated by a steady Gaussian process with e.g. a power spectrum

2i(0) = =@, (0) (1)

in the sufficiently wide, finite range of expected value m, = 0.
. S 2 .
Analyses assumed an orthothropic road and the effect x} = 27 at time ¢ on

front wheels to attain rear wheels after time ¥ = — (being the axle spacing),
v

hence 1 = Thereby excitation process x, becomes;
wp = (X g e, 2 ).
This analysis refers to a vekhicle in service operation — after decay of

transient effects — where the process pair (y,. 1), t > T, can be considered as
steady (of distribution) in a restricted meaning. For the sake of simplicity, in
the following, Ty = 0 is assumed. None of the ssumptions that x, and y, have
finite standard deviation matrices is to the detriment of general validity. To
decide linearity, linearity degree

[ r2j.(u) du




STRESS STATISTICS FOR COMMERCIAL VEHICLE FRAMES 3

defined by normed cross-dispersion function [3]
[Dyd = (E(yi—Ey))%  Dxy = (E(xo—Ex,)%)]
and
[E{E(y} | o) — E v} I
D y{

1y Ju(u) =

cross correlation funetion

vd — T oard VA .
_ E(y E?u)(-"'o E ) ,u>0
Dyd Dx,

1y jolu0)

(where E is the operator of expected value formation) will be applied. The
system may be considered as about linear if the result is Ljj. ~ 1, j =1,
2, ..., M. '

Linearity degrees L.j, will be assessed from statistics a,j, (see later)
deduced from process (v,x,) observed in interval [0, T]. To draw the final
conclusion requires to know confidence of assessment & j,, therefore absolute
general deviation of «,j, from ¢ j.. hence magnitude will be assessed. Let us
first introduce some symbols.

Let IV be a natural number, and for real numbers S;, i =1, ..., N—1I1let
— e < 8, <8, oo < Snoy L+ e

be met, number series S; be symmetric about the origin, that is, let S, =, —

— Sy—1Sa= — Sy_a ... (for even N, Sy, = 0).
Let 4y = (— 00, 8)), 4= [S.85) ..., Ay = [Sy-1, + =),
Z,=8; Zy=8Sy_;1 Z; = —51;:—‘?'— rt=2,..., N—1.

Let process x,, t > 0 of discrete value be defined, starting from process x,, as:

% = Z,, if v.€ i

hence let
_:\T
X = Z; I{x, ¢ ),
i=1
where for indicator function J — :

1if %€ i
0 if x4 i.

In connection with process x,. let us comment;

I(xfedi):{

— Vector process (y,, x;), i>> 0 being steady in a restricted meaning,
obviously, so will be vector process

(ve: ) = [yil&p % %o %4)]
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— From the complex of condition E x, = 0, specially selected ;, and
symmetry of the Gaussian distribution, it follows:

Et,=Ex,=0, t>0.

— Simple calculation of the variance of process x, yields:

N N
D%, = B — E&f=E 3 2°1(x, €4) — 3 p(4)Z}
=1 i=1
where p(4;) = P(x, £ 4} 1=1.2, ..., N,
Practical assumptions for road profile process i . s >> 0 and stress process y;,
t > 0 may be:
Cl. Values recorded at spots distant by at least S*

{wes" < St and {wyss” > 8 + 5%

as random variables are independent.
This assumption implies independence of

{xg:t" <t} and {r 1>+ }

accordingly, for a vector process x,, also

e S*
{x:t" <t} and {xfn, i A
v
are independent.
C2. Tor a vibration cycle U belonging to the lowest natural frequency of the

bus as a vibrating system, because of inherent damping effects of the
svstem, taking

s* =

_L, 10U

v

T = max

random variables
{vat' <t} and {y,, " >t -+ 7}
and, according to the above,
{(_'}":’ s xgt’ <t } and {(}'1" st >t }
will be independent.
C3. Process y, is bounded at a probability 1, hence there are constants —

— oo < Y; << Y, < o< where

P(Y, <y, <Y, =1.
For values Y, and Y, in C3, theoretical bounds may be indicated in the
knowledge of the bus frame characteristics.
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Stresses at single points of the vehicle in normal operation may be limited
by stress values beyond or below that the given point of the structure would
undergo permanent strain (yvield), involving distorsion of the vehicle. (Actual
measurements refer to a structure considered as stable.)

Let Y, = | Y, |+ | Y, then for arbitrary s, ¢ inequality
E(v, — Eyo(x; — E xy)? < K = Y? D? x, holds.

C4. Combined probability deunsity function of random variables

¥sand x;: f, (1, 2) = fyx, (7. 2)
in continuous, it can be partially differentiated with respect to r in either
variable, furthermore, a number R < 4Dx, exists such that for any
0<<u<T ¥, <{r< Y,and —4Dx; <z << 4 Dz, inequality
G}

i ~ Suolrs =) ‘ << R - fup(r.z) holds.
| |

C1I and C2 directly vield that
rgdu)y=0,lu | >+
and
M) =0, jul >
in the actual case vielding quotient of integrals over finite intervals

T

é' r3j(u) du (D)1 f R3j.(u) du

§ 72.u) du { 0%, () du
0 ] ;

as degree of linearity, where R, j.(u) is the cross covariance function, and
0,j, (u) the cross dipersion function;

R'v‘jx (u) E(., t+u 7 E "{~u)( —E x‘)

v]\(u = [E{E( t+u T Ey%+u ‘Y)}?‘]:
Let us assess now the index z, j, from observed values (v,. x,), 0 <t < T.
Since this assessment has to be made for every j,j=1,2, ..., M by the same
assessment method, for the sake of simplicity, subscript j will be omitted.
Assessment of functions R, (u) and @i\(u) will apply statistics below
(reminding that E %, = 0 and p/4,), D*x, are known, modifying accordingly
the assessment for function @ (u) in [5]:

{1

1 " -
wmz——jo@fﬂwwaogugz
- T—u ’

0
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where
s
y o= ——j—’-J y; dt
0

and

Ty

N 1 1 R T
Bw) = > —— jmm—wnm@a O<u<T
p(d) | T—u -
0

Let us see now, how to assess the absolute mean deviation of statisties

(D2~ [ Bis(u) du

; .

Se(u) du

Hpx =

DL,
from magnitude «,,..
Making use of triangle in equality:
(D) f R (Dg)—t | Res(u)du |
Eloy—az|=E : — : [L<
| |

\z 02 (u) du § Agx(u)du

a i

< (D%, o‘f 02 (u)du)~1 {‘Oj R} (x) — Rix(u)}du | +

St 3:, w)du
—|

- [03:(u) — B:(w)}dul}
iS 0% (u) du

= | | (Bs() — Ris(u))du| + E

o
’ﬂ

~ N
Since ¥; = N Z;I(x£4;) and D%, = S'p (4) Z}

{

i=1 i=1
utilizing Cauchy’s inequality yields:
T—u T—u
5. 0= [ [ s = na| = (S22 [ (s = 5) sl apa]
2 (u)= Yiey — X)X dt| = trm | Uten — ¥) RS =
Ryx ‘T—f—uJ s , (,‘:}{ T—u J Teeu i
0 0

T—u

= [ S0P 2) = ljwm—nﬂmnﬂ_




STRESS STATISTICS FOR COMMERCIAL VEHICLE FRAMES

hence
| ﬁf((u) du
E — < D%,
{ 02(w) du
0

accordingly:

E Joye — s | (0%, { O30) du) = { | [ Reulu) — Bislo)du | +
3 . 3 i

+ E 1 ((R (u) — ;c(u)) dul — D%, E | S‘(@ (u) — %; u)) dul} (

First two terms in figure brackets in the right-hand side of inequality (3) may
be assessed as:

Assessment of term 1

E jt(lzix(u) — 12;§(u)) dl‘} = % f (}{yx(u) - 125(“)(}{yx(u) -
0 0

R {u)du <

- R(u)d <
< [ Rpufw) — Rog () | du Dy (D, = D).
Obviously:
Ryfu) — Rlw) | = 1 E (y, — Eyo)x, — Elv, — Eyo) & =
= | E(y, — Ey

N 2yt
visn — ) | < DyofBlvg— SZiTtso€ )] J7

TI-.
4

N 1
= D)-'O[Z E(x, — Z;)* I{x,€ J,)}2 = Dv, H(S,, .... S, Dxp)
i1
where, for given values S,,..., 5, _; and Dx,. magnitude
- 1 s
H(S,,....Sy_1, Dxg) = [2 J (x—Sy_1)?==——¢ 2Dx dx +
P2 .on
Sx—1
e o - MR TR B
+ 3 J [x—- il ’1 = e Dx, dx |2 4
=1 2 V27 Dx,
Si1

can he determined at arbitrary accuracy. Accordingly, it holds

oy

|
(BN

(R3(u) — Riz(u))du | << v D% o(Dxy -~ Dx)H(S,, . ... .S._1, Dx,) (5a)
It should be noted that a simple assessment can be given for magnitudes
H(S,. ..., Sy_q, Dxy):
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N 1
H(S,..... Sy Dxy <|2 ¥ — Sv_ 2 —— e IDx, dx -
( ¢-1: Dxy) [ K P
Sx-1
J,S_v_l 1 1
Az T x 1
+ == ‘ o @ 3Dx, dx |2 <
4 N 1 2"[ D.’ro
S
o x? 1 ,/
< 2f (= Sy f o~ TBm dx f - D2 (5b)
V27 Dx, 2
Sx_1
where
2<i<N—1
Assessment of term 2
Obviously

El { (R2(u)—R3(u))du < E ( 'Rys(u) — Rg(u) | Ruz(w) | du -
0 o . i ot - L i
K

+~ E [ Ri(u) — Ryz(u) | Rug(w)du <

0

+ Do Dzo § [B(Rys() — Ryg(w))]t du +

H-j {E(Ryz(u) — Ryz(w))? E(Rz(w))?}* <

E E(R,x(u) — Ryz(u))*}* - {Dy,Dx, + sup [E(E\;(u)?]i} (6)

0<lu<t

<. T

l/\ m

0

-

For arbitrary 0 < u <C 7, simply:

T—u
E[R,3(u) — Rya(w) < 2 EHT ! J (E(yy — Evg)io —
—— UO
3 TTu F9
— (iew — Eyy) i;)dt]‘ *[ — [ B =i j ] (™)
T—u
0
Evidently:
T—u
E{ L | Bl Erf, = (e — Eyo &1 dip? =
T—u

0
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T—u
1 " . - .
= Mﬂ E{[E(y, — Eyy) % — (V120 — Evo)%][E(yy — Evg) %, —
0
27
— (¥szw — Evg)a]} dt ds < T'“ E[(y, — Eyg)x, — E (v, — Evg)3,J'<

—u

2t . 27
< ——El(y, — Ey,)* %3
S [ ¥o)® %3] o

IN
b

(8)

T—u Ttz

El: 1 J (Evy— }A’)-*Egclfr - l_l__ V[JP (Ev, — 37 &t ds} <

ﬁ J E{ ] (v: — Ey,)? -d:}.%_; Fodids =

! . JJ {_;_ J (E(y, — Ey,)? % 4] d:} dt ds 9)

Clearly, for anv t. s, z > 0:
| E (v: — Eyofai, | < [E(y: — Eyof BF[E(. — Eyof s3f <K (10)
On the other hand, for z‘ — s >17 and |t — :1 >71 or It — s: > 71 and

| o=

| s—z | >, equality

Lo

E(.": - Eyo)z'{‘t;{"s =

(11)

holds. (9) is easy to assess from inequalities (10) and (11):

T—u —~ T—u
N .2 K (¢ , : 27
E Ey, — ¥)xdt] <—F~— I t—~5s >71)—dtds +
T—u,l(“( % J (T—u,)z{_U‘ ¢ T )T
6 0
T:T" 5 5 T
_JJ [it—s <®didsl<-tR- T g=_""F 1——“—“J_<_
i ' T T—u T —u
0
<4 R (12)
T —1
Since
T—u
N 1 ¢ 2
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1 T T—u
S | B — P <Yy [ B d = ViD= R (13
—Uu

—Uu

using (6), (7), (8) and (13) vields:

: 1
E | § [Rx(w) — (u ldu | <= T-Lt 8t K--lg v
’ -7

X [Dy,Dx, + K¥] < 413

r'?*»e

14
(T_T) (14)

Assessment of term 3
Utilizing the triangle inequality:

E|0%(u) — O%u) | < | 0233(u) — O%u) | = E [0k (w) — Ok (w) | (15)

The lengthy derivation of theassessment of two terms in the right-hand
side of inequality (15) will be omitted, only the final result will be quoted.
Remind, however, that assessment of term 1 in the right-hand side was ob-
tained by using assumptions C3 and C4, while assessment of term 2 was ob-
tained by the same assessment procedure as that for terms 1 and 2 in the right-
hand side of inequality (3).

Results are:

| O%:(w) — O3x(w) | <2 Yi[pdy) + p(dn)] +=Y.(1 + Y,) R4, (16)

and

2 - )
E B3:(n) — @xlu) | <4 Y2[p(1) + (pdy) = =2 }«

218 2

it

where p* = min p(4))
2 N-1

Thereby from inequalities (15), (16) and (17):

6)
E | 0%(u) — O3s(u) | <2 Y3 [p(4) + p(dn)] + Yol = Y, ) R4, =+
27

-~ 4Y2 [p(dl) + p(dN)+ T

[rersmams
p* (T —
After having separately assessed three terms in the right-hand side of
inequality (3), inequalities (3), (5), (14) and (18) permit to directly indicate
assessment of error

Ela,. — =,

|
| ~
[ERasiae B
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T
E oy — % | < [Dx | O3(u) du]™ {rY2(Dx, + Diy) X
. 0

XH(SP“" N—1* Dlr,)—"‘ §I—

p() = Yol +Y )R, + 4T3 [p(4) = ply) + |+

T—1
R S (19)
p (T — )
Since
T3:<(1 ) = 65’3:(11)
’ D2y,
therefore
D2, § O3 (w) du > DD, | 12y(u) du = § R2(u) du (20)
| 0 0

and since j R <(1#) du is estimable from the given observation, it is advisably

con51dered.
E o, — 2l < DY i { ! D%, — D%, 413 _-_‘____ ,
P ot/ T 2. -
[ Repoa ! T (T — o
PR
8'17 1 \ 1 o 'E%
= 6[p(4,) + p(dx -f~-———+(——+1 RA, - — 915 —" 1 (1
[p() -+ ()] + 22 = [ 1) R+ 278 ) o
Conclusion

According to the Tchebysheff inequality, for any 2 > 0:
E |y — 2y |

P(tfyw““:}\{iz;)g

Hence, taking 2 = 0.1:

that is, at confidence level 1 —-;E oty — Oty

inequality o — 2 < oty < otyz -+ ) holds.
For instance, to have inequality

d}yi — 0.1 < “yx < ,O\C_\;’;:_ + 0.1
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hold at a confidence level of 0.9 (confidence interval for =« ., values N, T,

S,. ..., Sy_, have to be selected to have)
10. E i“)‘x — 52),3: [ << 0.1
That is:
E i“;vx — %,_:c | <C0.01
to hold.
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