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Abstraet

Railway traction vehicles moving along tracks go through excited vertical and pitching
vibrations due to the vertical unevennesses in the permanent way. These vibrations give rise
to axle-load variations, and dynamic loads in each element of the drive sysitem are created by
the variations in the creep- and axle-load-dependent tractive effort transmitted through
wheel-rail connections. The dynamic loads can be correctly described by the examination of an
integrated “track — vehicle — drive-system™ model. This paper deals with the dynamicanal-
vsis of the load-processes developing in the drive svstem. The analysis iz based upon the
results of digital simulation.

Introduction

Traction vehicle moving along the track goes through vertical and
pitching vibrations due to the always existing track unevennesses. These
vibrations give rise to changes in axle-load, and so dynamic excess loads arise
in each element of the drive system, since the track direction forces transmitted
through the wheel-rail connection are basicallv influenced by the axle-load
changes mentioned above. The operational reliability and life of the most
valuable traction-vehicle-stock is significantly influenced by the variation in
the dynamic loading conditions of the drive systems. The exact descriptien of
the dynamic excess loads mentioned above, and the solution of the problems
raised by vehicle design and operation can be implemented by setting up the
dynamic model of the entire track — wvehicle — drive system and the digital
simulation based upon the former, on an acceptable cost level.

Dynamic model used for the examination

The dynamic model elaborated at the Chair of Railway Vehicles within
the Institute of Vehicle Engineering at Technical University Budapest renders
it possible that the dynamie processes brought about in the drive svstem by
track unevennesses can be analyzed as embedded in a complex dvnamic en-
vironment with respect to the properties of the vehicle and track.
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The steady-state motion of the drive system can be interpreted in the
case of operational speed v, of the traction vehicle as considered to be constant.
This state of motion is related with the ideal case when the track is perfectly
even, the vehicle has no parasitic motion, and the track directional forces
transmitted through the wheel-tread are time-independent. In this state, the
elastic elements of the traction vehicle suspension system experience deforma-
tion due to the time-independent force actions required to overcome tractive
resistances, and consequently, the steady-state vertical axle-loads of the trac-
tion vehicle will develop. Let T, be the steadv-state axle-load developed on the
{" driven wheel-set of the traction vehicle. Then steady-state tractive effort
Zy = 1y Ty arvises on the i driven wheel-set where p; is the steady-state
value of the track directional force-connection coefficient between the wheel
and rail. If the rolling radius of the 1" wheel-set is svmbolized by R, then it is
evident that — in the steady-state motion of the drive system — steady-state
driving torque M, transmitted to the considered wheel-set from the mecha-
nism and reduced by the resistance torques is held in equilibrium by the tor-
que Zy;R; of the tractive effort.

But the steady-state motion of the drive system outlined above can al-
most never develop at the operational speed v, of the traction vehicle as con-
sidered to be constant. On the one hand, due to the always existing track un-
evennesses, the vehicle elements suspended on the springing of the vehicle and
the elastically supported wheel-sets are imparted an exciting effect from the
contact area of wheel-rail connections, and as a consequence, the axle-loads
become time-dependent according to relationship: T,(t) = Ty -+ T(t). Here
T(t) symbolizes the time-dependent partial axle-load modulating the steady-
state axle-load T;5 [1], [2].

Tractive effort transmitted through the {'" wheel-set will also be time-
dependent due to the variation of the axle-load with time: Z/(t) = u; T\(t). In
this way, the driving torque transmitted to the examined wheel-set from the
mechanism is counter-acted by tractive effort torque Z,(t) R; varying with
time. And this, in turn, will result in the formation of the time-dependent ac-
celerating torque acting upon the wheel-set and the angular acceleration
brought about by the former. Consequently, it can be stated that the forma-
tion of torsional vibrations in the drive svstem should be reckoned with owing
to the drive elements functioning as elastic and inertial energy storages. On
the other hand, it also follows from the foregoing that the angular velocity of
the driven wheel-set will also be time-dependent (w,(t)), and hence, creepage/
slipping speed Av; = R; w; — v, interpreted as the difference between vehicle
speed v, and rolling-circle peripheral speed R; w; of the wheel-set will also be
time-dependent.

It is known from the rolling contact theory of elastic hodies [3], and the
experiences of experiments [4], that force-connection coefficient u is of paro-
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mount importance with respect to the track directional force transmitted
through the wheel-rail connection, and this coefficient u is a function of the
vehicle speed and the creepage/slipping speed: y = u(v, Jz). Since, according
to the stated above, the creepage’slipping speeds related to the single wheel-
sets are time-dependent, therefore the tractive effort variation with time as
transmitted through the wheel-rail connection to a driven wheel-set at a con-
stant speed v, can be written according to relationship:

Z(t) = plvg, dvdt)) - Ty(t). Consequently, the variation with time of tractive
effort torques Z,(t)R; determining the loading conditions of the drive system
can be traced back. on the one hand, to axle-load time-functions T,(t) .and on
the other hand, to the creepage/slipping speeds time-functions v {t): [2].

It follows from the foregoing that the dynamic model mapping the oper-
ational loading conditions of the drive system can be divided into two sub-
svsiems interdependent dynamically from each other [6]:

a) the vehicle-track sub-system mapping the vertical and pitching
vibrations of the vehicle as excited by the track unevennesses to
determine axle-load time-functions T'().

b) The drive-system — vehicle sub-system mapping the torsional vibra-
tions of the drive system as excited by the tractive effort torques to
determine the dynamic loading conditions of the drive svstem.

The system-model developed in this way is a planar dynamic model as
far as its basic construction is concerned. in which the inertial, elastic and
dissipative characteristics of the track, the structural parts of the vehicle and
the drive system are considered as reduced to the vertical medium plane of the
track [6].

The stiffness- and damping characteristics of the track, and the effective
track masses, resp., placed under the wheel-sets are built into sub-system a).
Furthermore, here are built in the inertial, elastic and dissipative clements
mapping the structural elements of the vehicle according to their dominant
properties. The elements mapping the longitudinal dynamics reaction of the
hauled train are also included in this sub-system.

The dynamic model of a finite degree of freedom of the entire track-ve-
hicle sub-system is yielded in a way usual with the examination of mechanical
svstems. In this dynamic model the following are contained as free co-ordi-
nates: the vertical displacements of the effective track-masses placed under the

wheel-sets of the traction vehicle (z,; i = 1, 2, ... ,n); the vertical displace-
ments of the wheel-sets (z,;; 1 = 1, 2,...,n); the longitudinal and vertical
displacements of the bogies and the hody (x.. X2y Xg3 T, 50, 35) the angular

displacements (g1, ;. ¢,) developing in the vertical plane fitting onto the
longitudinal centre of the track; as well as the longitudinal displacement (x,)
of the mass replacing the hauled train. All the displacements (including the
angular ones) are measured starting from the state of equilibrium of the trac-
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tion vehicle, and the train, respectively. It should be noted that in certain cases
(e.g. in the case of one driven wheel-set, or one driven bogie) the number of
free co-ordinates of the dyvnamic system is reduced.

The exciting effect of track unevennesses is represented by function
u*(x) given as a function of the longitudinal co-ordinate of the track. In the
case of travelling speed v, considered as constant, already a time-dependent
exciting function is yielded by expression u*(v, t) where the values for the
single wheel-sets are given with a delay depending on the wheel-arrangement of
the traction vehicle. If the vertical displacement of the i wheel-set is z/(1),
and the vertical displacement of the effective track-masses placed under the
same wheel-set z,/(f), then relationship z,(t) = z,,(t) + u,(t) is in force where
ut) = u*(vy(t—1i,)). In case of distance d, between the axles of the leading and
the considered i wheel-set taken in the direction of travelling, the occurring
time-delay ¢; is vielded in the form of ¢, = d;jv,; [6].

Track unevenness function u* (x) can be a deterministic or a stochastic
one. In the case of a deterministic track excitation. the track unevenness
function can be a periodic one. or given arbitrarily on a prescribed sequence of
points. In the case of periodic excitation. the track unevenness function is
approximated by means of a finite Fourier’s expansion. while in the case of
unevenness values given on a discrete sequence of points, it is approximated
by means of spline interpolation. The treatment of the stochastic track un-
evennesses takes place by means of realization functions to be generated with
the knowledge of spectral density functions [2]. Note that in the case of a lin-
earized dynamic model, the spectral density functions of track unevennesses
can be transformed directly by means of the complex frequency function-
matrix of the model into the spectral density function of the required dynamic
characteristics [3].

If the examined traction vehicle is of n-axle. then the track execitation of
the entire system is yielded by vector function u(t) = [u,(t). ua(t), . ... 1w, ()],
which can be formed from track unevenness time-functions u,(t); i = 1,2, . . .. n.

The sub-system corresponding to}) contains the elements of the drive
system as performing votation or angular vibrations. So the respective dyna-
mic model contains the following as free co-ordinates: angular displacement
(pr31=1.2, ..., ng ny 7 n)of the driven wheel-sets; angular displacements
(s 1= 1,2, ..., na; ny -7 1) of the final-drives, or those of the nose-sus-
pended motors, respectively, around the axle of the wheel-set, or else, angular
displacements (¢, i = 1. 2, .... ny ny < n) of the output shaft of the
hydrodynamic transmission gear, or those of the rotor of the traction motors.
(We should like to note that in the case of an electric traction vehicle with
bogies of monomotors, the role of the angular displacements of the final-drive
and the nose-suspended traction motor. respectively, is taken over by the an-
gular displacement of the gear-case during torque-application.) Here, in the b)
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sub-system ave built in tractive effort torques (Z,(t)R;: i =1, 2, ..., ng;
n; < n) transmitted to the wheel-sets from the track. The autonomous proper-
ties of the system are not changed by the characteristic-curve of the driving
torque in the case of travelling speed v, considered as constant.

The degree of freedom of the entire dynamic model is vielded by the sum
of the degrees of freedom for the sub-systems according to a) and b). The
numerical value of degree of freedom in question can range from DF = 6
with the two-axle traction rail-car having a single driven wheel-set as far as
DF = 34 with the two-bogie locomotive having a wheel-set driven by six nose-
suspended motors.

Kotion equations and response characterisiics of the
dvnamic model

Themotion equations applied to the dynamic planarmodel outlined above
are derived in a synthetic way. For non-linear system elements and at a con-
stant mean travelling speed v, the following set of equations have been

yielded:
1) [M, + By(vg, X(1)] X(t) = £,(X(0). X(0). u(e), u(2). ii(e)).

where X(#) is the symbol of the vector-valued time-function yielded from the
free co-ordinates of the model, while u(t) symbolizes the vector-valued time-
function describing the exciting effect of the track. Mass-matrix M, is constant,
while M, is the derivative function of v, and X(¢) due to the state-dependence
of the wheel-rail connection force. The five-variable vector-function fv.o on the
right-hand side of the equation is determined by the non-linear structural
properties of the vehicle.

With the linearization of the match-point applied, set of equations (1)
takes the following form:

nNo

() ML+ M, ()] K@) + [, + Kafeg)] X() + [8, + S,(0)] X() =

= A, = B(vg) u(t) + Cvy) uft) - D(v) i(z).

A computer programme has been elaborated for the numerical solution
of both the non-linear (1) and the linearized (2) differential set of equations.
This solution vields the system of values defined on a discrete sequence of time-
points of solution-function X(z) and its first and second derivatives with respect
to time. The mechanical characteristics describing the dynamic loading condi-
tions of the drive system can be formed from these motion-state characteristies

3
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with the use of proper evaluation function g,,, according to the following vecto-

rial relationship:
(3) V() = g.(X(0), X(r), X())

The torque-arm-support forces, cardan-torques, ete. can enter the co-ordinates
of vector-function V(t). With linearization applied, the following simpler expres-

sion is yielded from relationship (3):
@) V(1) = Vo) — Vy X(r) = V, X(t) + V3 X(0),

where V(1) is the value depending on the mean travelling speed as a param-
eter, while V. V, and V, are constant matrices.

Computer-programme system elaborated for digital
simulation

To examine the mechanical processes of the system model introduced
above, the numerical determination of the solution-functions of the corre-
sponding linear and non-linear sets of second order differential equations is
required. While ensuring the possibility of multilateral parameter-analysis, the
following computer-programme of FORTRAN language has been prepared:

a) A programme suitable for the examination of a linear dynamic model
under periodic track excitation, by which the vector of the generalized
co-ordinates, and the vectors comprising the first and second deriv-
atives of the generalized co-ordinates, as well as the response-vector to
be formed from these can he determined for arbitrary time-points by
means of complex frequency-functions.

b) A programme suitable for the examination of a linear dynamic mod-
el under weakly stationary stochastic track excitation, by which
starting from the spectral density-function of track unevennesses, the
spectral density-function matrix of the vectorial process of the system
response can be derived by means of the complex frequency-function
matrix. With the main diagonal elements of the spectrum-matrix of
the response process as integrated with respect to the angular fre-
quency, the variance-vector of the response process and the dynamic
coefficients of the response process co-ordinate-functions will be de-
termined.

c) A programme suitable for the examination of a non-linear dynamiec
model enabling the consideration of two types of track excitation. On
the one hand, the exciting effects of the periodic track unevennesses




DYNAMIC LOADS IN THE DRIVE SYSTEM OF RAILW.4Y TRACTION 35

Examination model w=ronstant

Rail-car Traiter carriages ,iL
Driven bogie | be | Running bogie i

. mmain cardan

cutput torque of

gear
storcue- orm osupport force

<

wy s output engula

change - soged

Fig. 1

given by the finite section of Fourier’s series, and on the other hand,
the exciting effect of the particular track unevenness-function pre-
scribed arbitrarily on a given sequence of points can be taken into con-
sideration. In the latter case, spline interpolation will be carried out.
The numerical solution of the set of differential equations of the dyna-
mic model as reduced to a first-order one is given in the programme by
means of the fourth-order Runge-Kutta method of varving stepin-
terval on a preseribed level of accuracy. So the vector of the generalized
co-ordinates together with its first and second derivatives will be de-
termined on a prescribed sequence of time-points, while the value-
system of the response process can also be derived from those by
substituting them into the corresponding vector-function.

The results of examinations

The dynamic models introduced in the foregoing, and the digital simu-
lation based on them are illustratedbyload-analysis of thehydrodynamic pow-
er-transmission system of a diesel rail-car of 1000 mm gauge (Fig. 1). The rail-
car has one driven hogie, hence the degrees of freedom of the associated dyna-
mic model were vielded as DF = 18. The non-linearities of the dynamic model
were resulted from the geometrical properties of the bogie, from the non-linear

variation of the wheel-rail force-connection coefficient as the function of creep-

3=Z<
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age/slipping speed (Fig. 2), as well as from the non-linear displacement-rela-
tionship and dry-friction damping of the connection-force between the traction
vehicle and the set of trailer carriages.

The exciting effects acting on the dvnamic model were derived from the
periodic track unevennesses existing at the fish-plate rail-joints of the short-
streteh-rail permanent way. and they were described by a finite sum con-
taining the first 40 harmonics of the Fourier’s series. The shape of the track-
profile taken into comsideration in the neighbourhood of the rail-joints are
ghown in Fig. 3.

The dynamic loading conditions developing in the drive syvstem of the
examined rail-car at a mean travelling speed of v, = 105.91 km/h are repre-
sented by the time-function diagram of three charactaristic quantities. In
Fig. 3, time-functions F,y(t) and F,.{t} of the force actions arising due to the
periodic exciting effects in the torque-arm supports of the final-drives are plot-
ted. The time-function of the torsional torque arising in the main cardan-shaft
is represented in Fig. 4.

It can be seen well from the diagram that during running over a rail-
joint, as much as 24—28 times the stationary value occurs in the torque-arm
support forces, while as much as about 19 times the stationary value occurs
in the cardan-torque as a peak-value, respectively. The level-non-achieving
distribution- and density functions of the examined time-functions are plotted
in Fig. 5. It is striking that the distribution of the dynamic loads shows a
shape deviating significantly from the normal (Gaussian) distribution.

In the course of numerical analysis, the variation of the response-func-
tions yielded as a result of applying non-linear and linearized dynamic models
was also examined. The variation of the time-function of force F,, arising in
the torque-arm-support of the single-stage final-drive is shown in Fig. 6. in
the cases of applying non-linear and linearized modeis. The variation of the
two functions is significantly deviating from each other. It can be stated about
the function vielded by the non-linear model that its peak-values are greater
by 25—359, than those yielded by the linearized model, and the damping
characteristics of the functions obtained with the use of non-linear model are

less intensive.
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The reason of the significant deviations in the case of the examined
branching drive system can be explained by the significant macroscopic slip-
pings oceurring at the rail-joints. The peak-values of the slipping speed can reach
even the magnitude of 2,5 m/s as shown in Fig. 7. as opposed to the stationary
value 0.01165 m/s of creepage speed. On the contrary, macroscopic slippings
can not develop at all with the lincarized model.

Concluding remarks

On the basis of the results of actual examinations it can be stated that
the dynamic processes developing in the drive system of railway traction vehi-
cles asaresult of track unevennesses canhe detected by means of model-forma-
tion and dynamic simulation. It is revealed from the comparison of the results
obtained by using linearized and non-linear models that the application of a
non-linear model is required in the case of existing significant track uneven-
nesses.

The level-non-achieving probability-distributions can be used effectively
for the evaluation of dynamic processes, and these level-non-achieving proba-
bility distributions can be built also into the objective-functions of the optim-
ization problems {7].

Further investigations are required for promoting the development of
models, in the course of which, first of all, the parametric exciting effect of the
cardan shaft built into the drive system should be taken into consideration, as
well as the effects of tooth elasticity, those of the tooth-pitch- and tooth-pro-
file errors of the built-in gear-wheels [8].

In connection with the application of the model even identification
problems will arise [9]. On the one hand, identification processes can be used
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for the determination of system-parameters, and on the other hand, starting
from the measurement data related with the single generalised co-ordinates, a
possibility is also offered for the identification of the exciting track unevenness-
functions through the constructed model.
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