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Abstract

This paper outlines the first stage of a research project investigating the application of
latent structure modelling techniques to the trip distribution stage of conventional traffic
modelling. It has the objective of developing practical computer methods for fitting latent
structure models to trip distribution data, and to investigate whether these models give a
substantially improved fit to observed matrices of zone to zone flows. Discussion centres around
the results of applving the latent approach to four different types of model — negative expo-
nential, negative exponential quadratie, power and Tanner models — and the computing time
and resource requirements associated with each. The paper concludes with a summary of future
prospects and suggestions for application to real (rather than artificial) trip data matrices.

Intreduction

This report outlines the first stage of a research project investigating the
application of latent structure modelling techniques to the trip distribution
stage of conventional traffic modelling. It has a prime objective of developing
practical computer methods for fitting latent; structure models to trip distri-
bution data, and to investigate whether these models give a substantially
improved fit to observed matrices of zone to zone flows. In its simplest form,
a trip distribution model commonly used takes the form of:

— . ya) - ; ~
T;; = A4;B;exp (—7c;)
where T;; = the number of trips from zone i to zone j
¢;; = the costs of travel from zone i to zone j
A;
B; unknown parameters which need to be estimated
A

A value for 4, is often approximated by the population size of the zone
and attempts to reflect the generation of trips. B, similarly, might be taken
as the population size of the attracting zone. 2 represents the deterrence func-
tion and indicates the sensitivity of trip makers and making to the costs in-
volved. A large number of variants of this basic model have been tested. They
include the use of alternative deterrence functions — a power function, or
Tanner function — or alternative measures of cost (time, money, utility, dis-
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tance, etc.). In each case, the tendency has been to retain the aggregate nature
of the model, using it to produce large-scale predictions of traffic flows.

Disaggregate Modelling

Interest in disaggregate trip distribution modelling has increased in
recent years with the realisation of the inaccuracies and inadequacies of con-
ventional aggregate methods. The assumption that the behaviour of large
groups of people is predictable on the basis of mathematical probability. with
the idiosyncracies of individuals or small groups tending to be cancelled out,
has lost much favour. Lee (1973) suggested that the disaggregation of models
to take account of differentials in socio-cconomic characteristics and trip
purpose, would result in substantial improvements in their descriptive and
forecasting ability. This was re-affirmed by Wilson (1974). and Southworth
(1978a. 1978L and 1979) who proceeded to calibrate a production constrained
entropy maximising trip distribution model for a varietv of trip purposes and
income groups. This included the use of origin-specific time delay functions.

The trend towards disaggregation has been typified in the work of the
Transport Studies Unit at Oxford University and the development of travel
time budget models (Oxford University T. S. U.. 1980.). However, in keeping
with other efforts to disaggregate trip distribution modelling, the demands for
data and analysis increase alarmingly, detracting from the improved analysis
which it makes possible. It is the objective of this work to assess the ability
of a new approach to trip distribution modelling which makes full use of
traditional modelling procedures whilst at the same time uses the aggregate
information they provide as a basis for further disaggregation without recourse
to further costly and time consuming data collection and analysis,

Latent Structure Modelling

Latent structure modelling is a method of analysing and measuring
unobservable phenomena which cannot be satisfactorily operationally defined.
It is a technique derived from psychology and has been used to differentiate
between people, objects or collectivities either by classifying, ordering or po-
sitioning them along some continuum with respect to underlying character-
isties that cannot be explicitly measured.

In the context of trip distribution modelling, it is a methodology which
has potential to disaggregate a body of data into latent classes on the basis of
the underlying latent variables which exist within that aggregate information,
but without the need for further data collection. It thus provides a means of
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disaggregation, if such classes exist, which is quick, inexpensive and yet sta-
tistically reliable. The theory of latent structure analysis is described in detail
by Lazarsfield and Henry (1965, 1968) and examples of its use in practice can
be found in Goodman (1973, 1974, 1979), Clogg (1980) and many others. The
traditional body of trip data — the trip distribution matrix, in conjunction
with a trip cost matrix and a deterrence function, could be used to provide the
aggregate information from which latent classes might be derived. Clearly,
such classes are likely to exist. It is a matter of common sense that people of
differing incomes live in different areas, and tend to generate different trips
and travel to different places.

If one knew in advance what the categories were that made up the total
population, one could attempt to identify into which class each fell. But this
would require extensive data on income, socio-economic group, ete. which is
largely unavailable — and in any case, one might not know what the underly-
ing categories are. The latent structure model attemptis to disaggregate the
trip distribution matrix when the data to do so straightforwardly is unavailable.

Within latent structure modelling, in a two way contingency table, let
NN,;be the number of objects classified into category i on the first dimension and
category j on the second dimension (assuming two latent classes). The model
for independence is:

N, = A4,B, )

If data is a mixture from two different populations, within each of which
independence holds, we obtain:

N, = oAi Bj + (1—g) Ci Dj )

ij
where (under constraints on the other parameters) ¢ is the proportion in the
first population. The similarity of (2) to the traditional trip distribution model
(1) is clear.

Thus, with the discussion of disaggregate modelling in mind we can pro-
pose a latent structure model for trip distribution:

Ty = o0d; B;exp (—/¢;) + (1—0) C; D; exp (—UCy) (4)

This can be interpreted as trip data coming from two populations,
within each of which the conventional model holds. The model itself will (if
these two classes exist) divide the aggregate matrix into two matrices repre-
senting trips associated with the two groups. Initially only two groups are
used to verify the model and to ensure simplicity at this early stage. Quite
clearly an infinite number of groups might emerge, hut attempts to provide
for this are unjustified at this time.
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Objectives

The objectives of the research can be stated quite simply

(i) To write an efficient computer program to obtain the parameters of mo-
del (4). from given matrices of T;; and C; .

(i) To apply the program to real data in order to determine whether model
(4) is a significant (both in the practical and statistical senses) improve-
ment over model (1).

This report discusses the first stage of the research which aims to satisfy
objective (i).

Validation

Before the latent structure model could he applied within a trip distri-
bution context it was necessary to establish the validity of the results it pro-
duces and its abilitv to retlect and reproduce a known pattern of spatial inter-
action. Consequently it was decided to create a number of artificial trip matri-
ces derived using a specitic model formula, trip deterrence function, cost matrix
and set of attraction and generation parameters. Attempts would then be made
to reproduce these trip distribution matrices using both a conventional model
and a latent structure model. The latter would break down the matrix into two
componeunt parts.

The trip matrices which were artificiallv created varied in a number of
ways,

— in size. Matrices of between 5 % 5 and 18 x 18 cells were modelled.

— In the number of components. Artificial matrices were created using

two different values of deterrence function and attraction and gener-
ation parameters to produce two differing trvip patterns and these
were then summed to produce a single trip matrix. The latent strue-
ture model was then used to recreate the two matrices, whilst attempt-
ing to achieve the benefit of aggregated matrices. Some attempts were
alsc made with 3 component latent structure models and with single
component models for comparative purposes.

— In deterrence function. Each matrix and component size was tested

using 4 different deterrence functions.

Negative exponential e=* Ci

power C;;~

i : : T (51Cyt aCi?)
negative exponential quadratic e AT

Tanner e~* Cu C,-j"‘

The latent structure models were calibrated to reproduce the original
aggregated trip matrix. A minimum x? statistic was used to assess goodness of

fit. At the same time the sets of attraction and generation parameters used to
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define the artificial disaggregate matrices (in the case of two matrices/compo-
nents, two sets of 4; and B;) were compared with those produced by the latent
structure model. It was important that the latent structure approach should
be capable of reproducing both the overall matrix in aggregate form, and the
parameters which were used in creating the two (or three) component artifi-
cial matrix. If this was so, then it is possible that this approach could be used
to model a real life situation. If not, then its validity was in doubt.

The methed of testing goodness of fit between matrices was the minimum
72 statistic. This was calculated after every iteration of the latent strueture
model until a minimum was found. At this point iteration ceased and the results
from the modelling process could be compared with the artificial data. Attrae-
tion and generation parameters ought to be the same before and after modelling.
The x? statistic cught to be very small — reflecting accuracy. For the initial
validation procedure, a standard function minimisation procedure, was used
(NAG). This was a quasi-Newton algorithm for finding an unconstrained
minimum of a function using function valves onlv. From a starting point sup-
plied by the user. a sequence of points is generated which is intended to con-
verge to a local minimum. These points are generated using estimates of the
gradient and curvature of the objective function. An attempt is made to verify
that the final point is a minimum (Gill and Murray, 1972).

The validation procedure is outlined in Table 1.

Table 1

The validation process

—

. Define trip distribution model. deterrence function, attraction and generation parameters
and cost matrix.

10

. Define two (or three) values of the deterrence function.

Create artificial trip distribution matrices, one for each deterrence function.

IS It)

. Aggregate them into a single trip distribution matrix — the artificial two (or three) compo-
nent matrix.,

Recreate this artificial matrix using the latent structure approach.

<

Define model to be used — as in the artificial matrix.

7. Set initial estimates of attraction and generation parameters (two (or three) of each for
each zone).

8. Using the deterrence function values, estimates of attraction and generation parameters and
costs, aim to recreate the aggregate artificial matrix using an iterative function minisation
routine with 4 as test of fit. Do so by creating two (or three) trip matrices, corresponding to
the artificial data. Keep recalculating these matrices and comparing their aggregate sum
with the aggregate artificial data until the »? statistic is minimised, Cease iteration.

bt

Compare disaggregate attraction and generation parameters. If valid, they should match.
10. Check »? statistic for goodness of fit.

11. Check matrices for cell value accuracy.
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Results

Tables 2—5 outline the results from these validation tests. The complete
range of matrix sizes and of components was not tested for each model as it
was considered unnecessary. The resuits shown here are ample evidence of the
ability of the latent structure approach to recover one, two and three compo-
nent solutions through an iterative process and to do so accurately. This implies
that if the approach is able to model a known multiple or single component
structure of trip making, then it is likely to be able to reproduce and indicate
where such a structure exists in real data. but where that structure is unclear,
or unknown from the aggregate trip data. It would achieve this without re-
course to extra data collection or manual disaggregation of trip data that was
available,

The results are discussed below:

Table 2

Validation. Negutive exponential model

Differences between Modelled and Original

Matrix Size nents 3
¥ Companent Det.vi;x:;:hon 72 (accuracy) Balancing Factors

18 ¢ 18 2 none negligible (—11) none

10 x 10 2 none negligible (—7) none
9x9 2 none negligible (—7) none

35X 5 2 negligible negligible (—4) negligible
10 x 16 3 none negligible (—6) negligible

18 x 18 1 none negligible (—13) none

10 x 16 1 none negligible (—6) none

5X 5 1 none negligible (—8) none

Table 3

Validation. Power model

Difference between Modelled end Original

amx 2 mMpo t. 5

Maris Shze Components D“i—fﬁgnon 4* (accuracy) Balancing Factors

18 x 18 2 none negligible (—5) none

9x9 2 none negligible (—7) none

5% 5 2 none negligible (—9) none

9xX9 3 none negligible (—35) negligible (poorest
model was 1.0 to
0.82,7.07 to 8,00)

18 x 18 1 none negligible (—8) none

10 x 10 1 none negligible (—5) none

5% 8§ 1 none negligible (—9) none
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Table 4

Validation. Negative exponential quadratic

Difference between Modelled and Original

- . )
Matsi Size Components D\c't;hi:ncuon 7% {accuracy) Balancing Factors
18 x 18 2 none negligible (—9) none
10 > 10 2 none negligible (—8) none
5%X5 2 none negligible (—6) negligible (poorest fit
3.99 t0 4.00 and
1.98 to 2.00)
10 % 10 3 none negligible (—3) negligible (1.06 to
1.00,1.12 to 1.00)
18 3¢ 18 1 none negligible (—11) none
10 < 10 1 none negligible (—7) none
53X 5 1 none negligible (—8) none
Table 5
Vealidation. Tanner model
Difference between Mudelled and Original
Matrix Size Components N
Values #* (aecuracy) Balancing Factors
18 x 18 2 none negligible (-—-7) none
9x9 2 none negligible (-—-3) negligible (e.g. 2,92 to
3.00.0.51 t0 0.5)
9% 3 none small (—2) small (e.g. 1.09 to 1,00,
2.21t0 2.0)
18 x 18 1 none negligible (—7) none
10 x 10 1 none negligible (—8) none
5% 5 1 none negligible (—8) none

(1) Negative Exponential 1odel

1, 2 and 3 component, latent structure models were fitted to artificial
trip distribution data using a negative exponential deterrence function. The
largest number of runs were of two components, with mairix sizes ranging
from 18 X 18 to 5 x 5. In each case, except the smallest, the capabilities of
the latent structure approach were clear. x* values were very small becoming
progressively higher and thus representing a worse fit as matrix size decreased.
This was expected as derivation of parameters was always going to hecome
more difficult as the number of zonal cells decreased. Only in the case of the
smallest matrix (5 X 5) was the model incapable of reproducing the initial
values of attraction and generation parameters and deterrence functions.
Even so, the values recovered were close (e.g. deterrence function values of
0.04 and 0.10 compared with 0.05 and 0.10).

Three component negative exponential models were run for a 10 X 10
matrix. Despite the extra parameters which had to be estimated (in this case
60 compared with 40 in the two component case), the recovery of the model
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was very good. The deterrence functions of 0.05, 0.10 and 0.07 were each re-
covered whilst the parameters were closely matched. A 72 value of 0.26844E — 06
was achieved which was particularly good since the derivation of three com-
ponentsolutionsinevitably makesrecovery of theinitial trip matrix more difficult.

Single component models were run for matrix sizes 18 .7 18,10 x 10 and
5 X 5 to reflect the ability of the model to derive solutions where disaggregate
information was not required. Attraction and generation parameters and deter-
rence function values were reproduced exactly, and z? values were very low
uggesting a good fit.

n

(i1) Powcer odel

Single, 2 and 3 component modelswere again teste dand overall. the recov-

f initial values was verv good.

erv o

Two compeonent solutions were derived for 18 18, 9 G and 5 5
matrices with deterrvence functions of 1.5 and 1.2 in each case. 72 values were
relatively geod -— although not as low as for the negative exponential solu-
tions. The recovery of attracticn and generation parameters was good for all
but the 3 5 solution where inaccuracies crept in again, The larger matrices
modelled these parameters almost perfectly with the differences hetween arti-
ficial and modelled parameters attributable to rounding errors,

A three component model was fitted to a 9 x 9 matrix and a reasonably
good 7* value was obtained — although less accurate than that for the two
component equivalent. Deterrence function values were adequately reproduced
but the attraction and genmeration parameters were slightly less satisfactory
implying that larger matrices were reguired to achieve three component power
model sclutions. However, despite this, the ability of the model to work to-
wards a three component selution, was clear.

Single component solutions were again derived for comparative purpeses
and produced accurate representation of deterrence funetion, and attraction
and generaticn parameters. y° values were very low.

(111} Negative Exponential Quadratic Model

The * values for the two component negative exponential quadratic
model proved to be more accurate than the power model and compared fa-
vourably with the negative exponential model. Attraction and generation
parameters were well recovered as were the deterrence functions of 0.05.
0.10, 0.08 and 0.11. Once again, the ability of the model to recover original
parameter values and to reproduce the total trip matrix declined (marginally)
as matrix size decreased. In fact, the negative exponential quadratic model
proved itself to be the best model so far in recovering original values using
small matrices. Attraction and generation parameters were accurately repro-
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duced with the largest discrepancy being 1.98 compared with 2.00, and 5.98
with 6.00 (negative exponential values were 4.26 with 4.00 and 4.65 with 6.00).
The value of the extra parameters in the negative exponential quadratic model
was clearly apparent.

The three component solution for a 10 < 10 matrix proved to be less
satisfactory than that using a negative exponential model. Deterrence function
values were recovered accurately but the y?statistic was slightly less accept-
able; and the attraction and generation parameters showed some noticeable.
if only slightly significant, discrepancies — e.g. 4.00 compared with 4.17 and
5.00 with 5.26. Clearly, a larger matrix size would overcome this.

Single component solutions again, were accurately recovered from all
points of view.

(iv) Tanner Models

The Tanner model was foermulated to combine the best of the negative
exponential and power models although, inevitably, it has achieved a compro-
mise of the two. Two component solutions were fitted to 18 < 18 and 9 % 9
trip distribution matrices. y? values were not as small as for other models
although they remained reasonable. Deterrence function values were recovered
in both cases whilst in the 18 < 18 matrix case. the attraction and generation
parameters were also well reproduced. The smaller. 9 ¥ 9 matrix failed to
achieve such a good recovery of parameters and values of 3.0 compared with
2.89, 1.0 and 0.98 and 2.0 and 1.96 were typical.

The three component version of the Tanner model, fitted to a 9 % 9
matrix was least satisfactory of any model fitted so far. The y? value of 0.14911E
-02 was comparatively poor whilst the attraction and generation parameters
were far from satisfactory. Examples of the poor fit were 0.49 compared with
1.0. 4.77 with 2.0 and 2.0 with 2.30. Clearly the model was working towards a
fit but a larger matrix size would have helped considerably. Thus, despite the
explicit objectives of the Tanner model to combine the best parts of negative
exponential and power models, overall it produced a comparatively poor fit.
Its ability to produce a single component solution was also in doubt. although
the 7 results. and recovery of parameters were adequate.

C. P. U. Time

Whilst carrying out the validation exercises, it was decided to examine
the time and resource requirements of the latent structure approach to trip
distribution modelling. The iterative nature of this process suggested that it
would require substantial quantities of computer time that would increase
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disproportionally to the size of the problem. This, coupled with the known
requirements of conventional trip distribution modelling and the practical
need to constrain resources, meant that detail of CPU times was an important
indicator of efficiency.

Table 6

Some examples of CPU time

CPU Time

Matrix Size Funetion Components

Min Secs
335 Power 1 0 6
33 Neg Exp Quand 1 0 4
6> 6 Power 1 0 17
6 X 6 Tanner 1 0 11
6 6 Neg Exp Quad 1 g 15
9% 9 Power 1 0 46
9% 9 Neg Exp Quad i 0 41
10 x 106 Power 1 1 21
10 > 19 Tanner 1 1 9
10 > 16 Neg Exp Quad 1 1 3
18 < 18 Power 1 14 18
18 x 18 Neg Exp Quad 1 10 16
53X 5 Neg Exp 2 1 17
3 X 5 Neg Exp Quad 2 0 30
6 X 6 Power 2 2 33
6 < 6 Neg Exp Quad 2 2 06
9% 9 Neg Exp 2 6 1
9.9 Power R/ 3 24
10 > 10 Neg Exp Quad 2 7 39
18 x 18 Neg Exp 2 40 24
18 x 18 Neg Exp Quad 2 38 34
9x9 Power 3 17 53
10 x 16 Power 3 26 00
10 x 10 Neg Exp Quad 3 27 57
18 » 18 Tanner 3 36 00

Table 6 outlines a selection of CPT times associated with a variety of
validation runs. It is clear from this that the requirements of computer time
are closely allied to the matrix size and more particularly, to the number of
components. Together they determine computer needs. It is important to note
that these times are for validation runs only and one would expect that the
models would be able to recover artificial values in a quick, concise and effi-
cient way. Clearly, when applied to the vagaries of real data, these requirements
are likely to increase substantially in which case, the demands of, say, the
three component model and larger matrices, may be prohibitive.

From the earlier table it is clear that hoth model type and matrix size
are significant in determining time requirements. The negative exponential
quadratic model is distinctly less efficient in deriving a solution compared with
the power model — although we have seen earlier, that it is able to do so rather
more accurately than any other. These two features may not be entirely
disconnected.
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In every case, the value of disaggregating the trip structure into an ad-
ditional component needs to be carefully assessed. It is expensive in time and
resources and the extra information it provides has to be shown to be worth-
while. Subsequent stages of the research will aim to reduce computer require-
ments so that application to real data trip mairices becomes more viable.

Conclusions

A computer program has been developed that fits a latent structure mo-
del for trip distribution to a matrix of trip data and breaks this information
down into a specified number of trip matrices, each related to a certain underly-
ing parameter. The number of matrices (or components} tested, is three (1, 2
and 3) and the matrix sizes range from 5 X 5 zones to 18 X 18. Four deter-
rence functions have been used — negative exponential, power, negative
exponential quadratic and Tanner.

Examination has been made of the ability of each model and each matrix
size for each component number, to recover the original values of attraction
and generation parameters and deterrence function values used to create the
original artificial trip distribution matrix. The test of goodness of fit, at which
point the iterative modelling process ceases, has been the yz* statistic. Exami-
nation of values recovered by the latent structure models has shown that in
all cases, a reasonable fit has heen obtained and that in many, the {it has been
exact. As matrix size increases, so does goodness of fit. This is also the case
as the number of components decreases. The y? statistic showing the relation-
ship of the trip distribution matrices to the original matrices has in general
been very good. Deterrence function values have heen recovered without
exception.

Overall, the latent structure approach has shown itself to be able to take
an artificially constructed trip matrix which is known to consist of a set of
components (ranging from 1 to 3) and reproduce this matrix aceurately whilst
deriving the appropriate number of components, the constituent trips and the
associated parameters and values. Consequently, it is fair to assume that the
process of latent structure trip distribution modelling has been validated.
A clear assessment of the capabilities of a range of deterrence functions has
emerged, although the purpose of testing these models was not to select one
but to discover which were applicable in the latent structure context. Given
validation in these terms, it is safe to assume that the approach could be ap-
plied to real data and that the results it produces will be meaningful. A prelim-
inary examination of the computer CPU time requirements has shown this
to be a significant issue that will require further attention as the demands of
real application become more apparent.
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Future Research

Following validation, it is possible to develop the latent structure ap-

proach in a number of ways:

(1) Its application to real data. A number of relatively small real trip distri-
bution and cost matrices have been assembled. Two and three component
models will be fitted to this information with the aim of disaggregation
into a separate number of trip matrices as well as an aggregate matrix
which will be fitted to the original data (using 42 as a test of goodness of
fit). An examination will then be made of this 42 statistic. the attraction
and generation parameters and deterrence function values which are
derived and the division of trips into component parts. Clearly, if no such
split into components is possible, this might reflect either:

(a) a deficiency in the model; or
(b) the fact that no latent structure exists in real trip data.
It might also suggest that more than two components are needed.

(ii) Current modelling approaches use a general algorithm for function mi-
nimisation. Clearly, specific algorithms which are designed to meet the
requirements of the latent structure approach, might offer a more precise
and efficient modelling method. The effect upon computer resources
could be significant.

(i) Each of the deterrence functions will be fitted to a variety of real data
trip matrices. Similarly. a number of components will be derived (1. 2,
3 and possibly 4).
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