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Ahsirae:

Unevennesses alwavs present in railway tracks give rise to vibrations in the vehicles
moving along the rails. In vehicles equipped with direct friction-brakes. vertical exeiting effects
act upon the sprung vehicle parts through the brake suspension system with the intervention
of friction-forces acting upon the wheel-sets when the brake gear is in action. In this paper,
the formation of a dvnamic model is deseribed which is suitable for the examination of exciting
effects transmitted through the brake suspension svstem. and the description of the svstem is
given as required for digital simulation taking into consideration a two-axle vehicle equipped
with block-brakes, The results obtained can be applied directly to the case of bogic vehicles.
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Unevennesses always present in railwayv tracks give rise to \'ibrations
in the vehieles moving along the rails. As a consequence of vibrations. the struc-
tural elements and the load of the vehicle are exposed to dynamic oV i‘loads.
The exciting effect acts directly upon the wheel-sets contacted with the rails,
from where it is transmitted onte the vehicle superstructure through the inter-
mediate structural parts. In a basic case, the transmission of the vertical forces
is ensured by the elastic-dissipative force-connection of the spring-suspension
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stem. But in case of vehicles equipped with friction-brakes, when the brake-
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gear is in action. ver tical foree components are transmitted onto the sprung
vehicle parts through the brake suspension system — with the intervention of
the frictional force acting upon the wheel-sets —, which aet quasi parallel with
the structural parts of the spring-suspension system. The parallel force trans-
mission mentioned above implies the fact that, on the one hand, themotion
of the sprung vehicle parts is intensively damped Ly the frictional fo 'ces arising
due to the brake-gear in action parallel with the elastic dissipative force-con-
nection of the sprung suspension system but, cn the other hand, exciting, un-
damped forces are transmitted from the primarily excited wheel-sets onto
the sprung vehicle parts through the brake suspension system. This latter force
transmission determines, among others, the loading conditions of the brake
suspension system, and thus knowledge of the variation dynamics of forces is
of paramount importance for the dimensioning of the system. It also follows
from the above that, in case the brake-gear is in action, the vertical wheel-tread
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forces arise in a way differring from the case of the unbraked vehicle-running
under the same track-unevenness conditions. And as a consequence, it can be
also deduced from the foregoing that the creep-dependent track-directional
wheel-tread froce — which is, in fact. the braking force acting upon the
vehiele —, since it is the sum of the products of the vertical wheel-tread forces
and the creep-dependent force-connection factors, can be determined only by
means of joint examination of the track excitation and the processes associated
with braking. In this way, the development of brake performances — and
within it, e.g. that of the stopping-distance — can be caleulated with due exact-

Fig. 1

ness only in knowledge of the actual track excitation. In this paper, the con-
ditions of the two-axle railway vehicles are examined in the case of block-tread
braking and uneven tracks. For the dynamic processes to be analized, the sim-
plified planar dynamic model containing several non-linearities is formed, and
the description of the system required for digital simulation is given. The depth
of the system decomposition used in our treatment is in accordance with the
level applied in the technical literature on similar subjects [1], [2].

2. Dynamic model

The planar dynamic model formed for the purpose of analizing dynamic
processes is shown in Fig. 1. The superstructure of the two-axle railway vehicle
(underframe, body-work and load) is simulated by a rigid body having mass m,
and moment of inertia @ regarding the axis in the gravity centre vertically
to the plane in the Figure. The two wheel-sets of the vehicle are simulated by
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two rotating dises having masses m,; and m,,, respectively, and moments of
inertia 0, and @y, respectively, calculated for the axis of rotation. The inertia
of the permanent way parts supporting the two wheel-sets are represented by
masses m,; and m . respectively. The relationships between the masses men-
tioned above are of a different character. In service conditions with the brakes
inoperative, the spring suspension system realizing the vertical force transmis-
sion between the vehicle superstructure and the wheel-sets were mapped with
the use of simplifications — by means of linear springs of stiffness s; and s,,
respectively. and linear shock-absorbers of damping factor k, and k,, respec-
tively. As a first step, no clearance was considered between the axle-hox guides
and axle-box cases. In this way, the horizontal forces of the axle-box guide
were treated as internal forces arising in a displacement-free froce connection.
Under service-conditions of the braked vehicle, foree-connection develops also
through the brake suspension system parallel with the spring suspension sys-
tem, between the vehicle supersiructure and the wheel-sets. The transmitted
force is determined by the frictional force arising on the brake-blocks and the
geometry of the suspension system. The vertical supporting reactions develop-
ing in the connection of the wheel-sets and the rail-head were treated as internal
forces. The representative track-masses located under the wheel-sets, at the
start, were considered to be connected to the stationary reference-plane with
linear spring of stiffness s, and sp. respectively, and linear shock-absorbers
of damping factors k,; and k,. respectively. As a vertical external force,
the force of gravity acts upon each mass of the system forming the model.
As a state-dependent force of horizontal direction acting upon each mass of
the system simulating the vehicle superstructure, the air-drag force and the
longitudinal forces transmitted through the buffer- and draw-gear should be
taken into consideration. As horizontal external forces, the state-dependent
creep-forces arising on the wheel-treads act upon the masses of the wheel-sets
(the resultant of the horizontal brake-block forces acting upon one wheel-set
as resulting from the brake-block on the right- and left-hand sides is equal to
zero). The representative track masses can be displaced only in a vertical diree-
tion consequently, they are considered as braced horizontally.
The free co-ordinates of the dynamic model are the following:

x the horizontal displacement of the centre of gravity in the vehicle super-
structure
z;  the vertical displacement of the horizontal median of the vehicle super-

structure at the point above the axle of the front wheel-set relative to
the standstill condition of the vehicle,
the vertical displacement of the horizontal median of the vehicle super-
structure at the point above the axle of the rear wheel-set relative to
the standstill condition of the vehicle,
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z,,  the vertical displacement of the centre of gravity of the front wheel-set
relative to the standstill condition of the wvehicle,

%,  the vertical displacement of the centre of gravity of the rear wheel-set
relative to the standstill condition of the vehicle,

9,1 the angular displacement of the front wheel-set as interpreted in the
vertical plane,

¢ the angular displacement of the rear wheel-set as interpreted in the
vertieal plane.

On the basis of actual evaluation of the set of free co-ordinates and their
irst derivatives, the (motion)state-dependent forces arising in the force-con-

¢
nections hetween the masses forming the model can he determined. From the

a
dvnamic model, the force-connection between the tyre
and the brake-block, as well as the force-connection hetween the wheel and

point of the examined

the rail are of basic importance. The effect of the elementary tangential friction
forces arising in the friction-connection between the tvre and the brake-block
as exerted upon the periphery of the wheel is taken into consideration with
a concentrated force-action derived from the horizontal brake-block forces
and the sliding friction coefficient in the form of a product. The sliding-

friction coefficient was given as the funetion of the mean brake-block pressure

buildt up and of the sliding speed developing in the friction-connectien in the
form of a non-linear two-variable funciional relationship based upon measure-
ments. The peripheral force rising in the wheel-rail connection was derived
as the product of the vertical axle-force and the force-connection coefficient.
The force-connection coefficient was given as the two-variable non-linear func-
tien of the creepage/slipping speed interpreted as the difference hetween the
peripheral speed and the track-directional travelling speed of the wheel. as
well as of the track-directional travelling-speed of the wheel. The geometrical
characteristies including also track unevennesses required for the setting-up of
the motion equations of the dynamic model are shown in Fig. 1.

3. Motion equations of the dynamie meodel

The motion equationc of the dynamic model with seven degrees of free-
dom discussed in point 2. were determined by means of the synthetical method
with the force-actions and torques taken into consideration, as represented
in Fig. 2. If

X =[x, 21, 5 520 %2 P P2l (1)

symbolizes the vector of the generalized co-ordinates, then the motion equa-
tions of the dynamic model can be included — after proper rearrangement —
into the non-linear implicit differential equation of second order

MX, X)X = F(X, X, 1) @)
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related to vector-valued function X(¢), which differential equation will be con-
verted into a stochastic differential equation [4]. [5] in case of the stochastic
variation of track unevenness { . Matrix M on the left-hand side of Eq. (2) con-
tains the constants formed from the geometrical and inertia characteristies of
the dynamic model, the X-dependent wheel-rail force-connection coefficients
(s> fie). and the X-dependent first derivatives (i1, {l_¢+1)) of the ver-
tical track-unevenness function. The detalied description of matrix M is shown
in Fig. 3. It should be noted that — when writing the elements of M — it was
considered that the origo of the co-ordinate system of track-unevenness func-
tion [, — is situated under the front wheel-set at the initial time-point of

ME, X) =
I,-m
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the examination. So, relationships 2y =z, + {; and zp =12, + {41
are in force between the vertical unevennesses and the displacements of the
wheel-set masses and track-masses, respectively. The co-ordinates of vector
function F on the right-hand side of Eq. (2) are formed from the expressions
of the different time-and (motion)state-dependent force-actions and torques.

The detailed inscription of vector F is shown in Fig. 4, where the symbols are

— Fyohy + Cihy + Vb — Ry — Froay + Fih, +
; L+ V'.’z b:“‘Cz hﬁ+311v1+-111;‘2

= Syry— Spry + Fir, — Miy

L

Fig. 4

the same as those applied in Figs 1 and 2. Note that M, and M, indicate
bearing-friction resistance-torques, while M., and M,, indicate the sum of
bearing-friction and rolling-friction resistance-torques.

The expressions of force-actions FY and F3 are the following:

R ! t P2
FY = —paGp + pa Py + pamy, - 47,

Fy = —poGp + pePo -+ Hsﬁmp‘.’.'sg—(ll+l=)x2' ()

2 L

The forces transmitted through the brake suspension elements are derived
from the friction-forces arising on the brake-blocks with the help of relation-
ships:

Ve Tl g

TS i i=1,2. 4
iy J {4)

4. Time- and state-dependence of the forces oceurring in the equation of motion

The forces occurring in Eq. (2) should be described as the functions of
time and (motion) state. In the first place, virtual friction-forces S;; transmitted
through the friction-connection of the brake-blocks will be dealt with. Accord-
ing to relationship S;; = u, F), the virtual friction-force is derived as the prod-
uct of friction coefficient g, and brake-block force F,. Brake-block force F,
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represents an external, time-dependent force-action, while friction coefficient Biypo
for a start, depends on brake-block pressure p, = F,/4, and sliding-speed v;;
occurring on the sliding surface of the brake-block. (Here A symbolizes the
sliding surface of the brake-blocks on one side of the wheel-set.) The sliding-
speeds evolving on the sliding surface of the brake-blocks are obtained in con-
sideration of the following relationships:

Uiy = T — %12 + Fao (5)

where
Ty = %1 Z;llz (21 — %)
Zyp = £ — 11112 (2, — %),
%:g+%i%@-@, ©)
by — 1 :
Zop = Zy 12_}_ 12,_2 (21 — 2,)

So virtual friction-forces Sij will be provided by the expression:

Si; = w(pe o)) (sign v;)) - F, M

in case i, j = 1, 2, The two-variable friction-coefficient function y, is represent-
ed above the positive plane-quadrant in Fig. 5.
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Traek-directional force F; transmitted through the wheel-rail connection
is yvielded by the expression:

— ! | F022 Floe ! —
F,= “‘f“'sipr + ug P+ BTl g S V™ T Mg g6 Mgy 2y ==
= F'¥F e Do © 9
= F} <4 foim p Lo — prgm 5y 1=1,2. (8)

The decisive role of force-connection coefficient u, is obvious. Force-connection
coefficient p1; — as mentioned above — is the function of the wheel-tread
creepage/sliding speed x — rg,; and travelling-speed «. The values of p; are
vielded by the expression:

fg = . & —rgy) sign(x — rgy) =12 9)

from the force-connection coefficient function y, shown above the positive
plane-quadrant in Fig. 6.

The motion-state dependence of force-actions R, and R, transmitted
1 2
from the spring-suspension system onto the wheel-sets and the vehicle-super-
structure, respectively, were obtained in the form:

Ry = Ry + sz — 71) + ks — &) i=12 (10)

where the springing is considered to be linear and the damping is also taken
into consideration.

The air-resistance force acting upon the vehicle-superstructure was
calculated as the function of speed according to relationship

sign x. (11)

Forces C; and C, were equally considered as zero in our examinations,
and their occurrence in vector-valued function F on the right-hand side of
Eq. (2) intends to ensure the subsequent considerability of the longitudinal
dynamic interactions.
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The state of motion-dependence of force-actions P; and P,, respectively,
transmitted to the representative track-masses placed under the wheel-sets is
obtained in the following ferm:

P, =P,— Sp13 — L) — kpl(i"‘/;l — ix) (12)
P, = Py — sp2<:k'3 — ':x—(z,+lz)) - kp2(5p2 - C.’\'—(I,H:)'.x)

with the elasticity initially also considered as linear, and with the dissipation
taken into consideration.

Torques M, ; and M,, of the friction forces arising in the bearing-supports
of the wheel-sets as transmitted to the vehicle-superstructure are obtained
in the following form:

M= (a +b|rgy| + c(rgy)?) signg,, t=12 (13)

depending on the peripheral speeds of the wheel-sets, while the values of the
bearing-friction resistance torque acting upon the wheel-sets as increased with
the rolling-friction torques were obtained by the expression:

M= (@ + 6 [rgy| + C(rge)?) signg,,  i=1,2 (14)

given also as the function of the peripheral speed.

The constant force of gravity acting in the centre of gravity, too, was
operated on each mass of the model (G, Gyy. Ga. G- Gp). Between the men-
tioned forces of gravity and the constants occurring in formulas (10) and (12),
respectively, relationships R;q = G, and P,y = G, + G,; + Gp,.; 1=1,2
are in force, where

"7 Ez © T _liz
17T 2 17T 2

The state-dependence of forces Ff and F5 occurring in vector F on the
right-hand side of the motion equaions were already given through the pair
of formulae (3), while the state-dependence of force actions V,.j; i,j=1,21is
also determined by formulae (4) and (7).

In connection with track-unevenness ., it should be noted that if it is
considered to be a deterministic one, then the first and second derivative
functions can also be considered as known, consequently, the elements of
vector F and those of matrix M can be calculated. If track-unevennesses {, are
considered to be a statienary stochastic process with zero expectation having
a spectral density function S(Q) (given as the function of angular frequency
[Q] = rad/m), then the numerical values characteristic of excitation as required
for the simulation are obtained on the basis of the formula of realization fune-
tion of the process in the following form:

22 V5(2,)42 cos(Q,x + ;) (15)

k=1

§ P.P. Transportation 15/2
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developed on the basis of the discrete sequence of angular frequency @, [3],
[6]. In formula (15), p, symbolizes a normally distributed random number
with zero expectation and with a variance S(02,)4Q, while y, stands for uni-
formly distributed random numbers in [—=, ). Derivative functions from (15)
are obtained by the expressions:

N —_—
o= — 2 20,V S(2,)4Q sin(Q.x + ) (16)
k=1
and
P N Iy
fo=— 3207V S(2,)4Q cos(Qx 4 v). )

5. Numerical solution of the motion equation

If both sides of motion Eq. (2) are multiplied by the inverse of state-
dependent matrix M(X, X) on the left-hand side of the equatlon then the ex-

pression of acceleration vector X is obtained in an X- X- and t- -dependent ex-
plicit form like this:

X=M1XX) FX, X, t) = (X, X, 1). (18)

To solve the explicit equation obtained in this way in a numerical form, it is
expedient to change over to the differential equation of the first order:

5 Fﬂ [@(YQ, Y, z)‘l
v=| '|= = W(Y, 1) (19)
| Y, | Y, |

related to the 14-dimensional state-vector ¥ = [Y,, Y,]*, with the application
of substitutions Y, = X and Y, = X. With the system of initial speeds Y,(z, )

= X(t,) = X, and the system of initial displacements Y,(t;) = X(t,) =

assigned to initial time-point #, as connected to Eq. (19), the initial value prob-
lem set in the way mentioned above can be solved numerically. To solve this
problem, the Runge-Kutta method of fourth order can be used well, the
essence of which is that starting from the system of initial values, the approxi-
mate values of the solution-function can be generated on the sequence of time-

M

points {ti}i\;l of spacing ¢, by means of definition:

1
Y(t) = X(t) + —6_ (ki + 2(kp + ki) + k) (20)

i2

where coefficients k;sj=1, 2,3, 4 are determined as follows:
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k= ¥(Y(t), 1) 4,

k; At
k= W|Y(t) + =%, t, -+ —| de,
112 (Y(tl) [ 9 ‘>t1 Z]At
(21)
k; At
if =‘§,Ytl+ lzstl‘_}_-—]At’
iz ( )+ 2

k, = ¥X(t,) + k. 8, + Ar)de.

With the successive application of relationship (20) as relying on (21),
the approximate values of the state-vector-function ¥(z) are obtained on the
sequence of time-points of spacing At chosen as the basis of calculations.

It should be noted that owing to the relatively high calculation-demand
character of the Runge-Kutta method, in case of preliminary dynamic analyses
of lower calculation demand character, the use of a numerical approximation
method of solution can be justified which renders Eq. (2) explicit so that by
grouping the state-dependent members of matrix 3 on the right-hand side of
the equation, they are determined through multiplying them by the value of
acceleration as related to the previous time-point.

6. Concluding remarks

The application of the dynamic model dealt with in the previous chapter
and the calculation process associated with it leads to a numerical determina-
tion of state-vector Y(#) of a hraked railway vehicle travelling along uneven
track, as has taken place on a given sequence of time-points {¢,}.;.

The input process of the dynamic system represented by a braked vehicle
travelling along uneven track will be the time-function of brake-block force F.
The state-space method, according to its aspects, transforms time-function
F into state-vector ¥(t), as the first step of the dynamic system, then — in the
knowledge of ¥(t) and F; — into the requested system-respomnse vector V(z).
In Fig. 7, the block-diagram of the mentioned transforms are shown, and the
character of development is outlined for the time-function of brake-block force
F,, and for the response-function system V() = [V4(t), Vya(t), Viy(t), Vaolt) |*
containing forces arising in the brake-suspension elements, in the case of stop-
braking.

Functions V,(t) follow the character of variation of function F, with
smaller or greater deviations in the first half period of the braking process.
But in case of a significant reduction in the vehicle-speed — and first of all,
at the moments immediately before stoping —-, the speed of the tyre-brake-

6*
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block sliding is basically determined, according to relationships (5) and (6),
by speeds z; and z,;; 7 == 1, 2, depending on the vibrational state of the vehicle.
So with (4) and (7) taken into consideration, a sign-reversal force-variation can
develop also in functions ij(t)c indicating a significant dynamic overload of
the brake-suspension system.

To describe and analyse the dynamic processes in the braked railway
vehicles as brought about by the track-unevennesses, the examination-model

Sysiem MY Systam
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and calculation-method elaborated in this paper are advisable to be developed
in the following directions:

1. Development of a more detailed dynamic model of the spring-suspension
system-connection with the elements of non-linear elasticity and dissipation,
as well as the effect of a loose axle-box guidance taken into account;

[

. Recknoning with the mass, elasticity, damping of the brake suspension

system and the effects of backlashes at the links in the model;

3. Reckoning with the dependence of the friction-force arising between the
brake-block and the tyre upon the temperature conditions of the friction
interface in the calculation process;

4. Reckoning with the stochastic process-couple describing the random fluctua-
tions of the coefficient of friction between the brake-block and the tyre,
as well as those of the wheel-rail force-connection coefficient in the calcula-
tion process;

5. Reckoning with the non-linearity of the track-compliance and dissipation,

as well as the local elasticity present at the wheel and rail interface in the

model and with the calculation process.
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