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Ahstract 

The method presented is advantageous for structures comprising recurrent part elements 
by applying the five basic transformations and their combinations, thus eliminating much of 
tedious data input. Sub structuring avoids the need to produce consecutive stiffness matrices 
and time-consuming reduction. Recurrent structural parts can be composed to panels - with­
out high-capacity mass storage suiting the rapid composition of various models in an explicit 
form (reduced to appropriate points). 

Introduction 

Two problems facing us in computerized finite element analysis are in­
creased memory and mass storage capacity demand as ·well as long running 
time. The so-called substructure method lends itself to the analysis of complex 
structures or of simpler structures by minor compters. Without entering into 
details of this method, it essentially consists in decomposing the structure into 
part units (substructures), then producing their stiffness matrices, to be reduced 
subsequently to connecting points (common points of substructures) [1]. 
Thereby it is sufficient to solye the reduced equation system and equation 
systems of each different substructure. 

In order to increase the efficiency of this method, let us have a look at 
the time-consuming steps of the substructure finite element method, such as: 

1. to define the geometry; 
2. to produce the substructure stiffness matrix; 
3. to reduce the substructure stiffness matrix to connecting points; 
4. to solve the equation system of the structure; 
5. to solve substructure equation systems. 

The substructure method is advantageous as it involves much fewer 
operations hence has a shorter running time demand compared to solving the 
complete equation system. Another advantage is the possibility to examine the 
effect of modifications within a substructure independent of the other substruc­
tures. 

Let us present now a method that aids in reducing running time demand 
for steps 1, 2, 3 for structures comprising several parts of identical geometries. 
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Transformation algorithm of a substrncture stiffness matrix 

The structure in Fig. 1 can he decomposed into five suhstructures, the first 
four having an identical geometry. Stiffness matrix of substructure 1 may be 
supposed as strictly related to those of substructures 2, 3 and 4. This relation 
is similar to producing the stiffness matrix of an element in the local (element­
bound) coordinate system, to be transformed into the glohal coordinate system, 
i.e. a transformation by rotation [2], [3]. Actually, the problem is to produce 

Fig. 1 

the stiffness matrix of an arbitrary substructure in a posltlOn different from 
that of a substructure known in the global system by simple means, using its 
stiffness matrix, without repeatedly composing it. Substructures 1 and 2 are 
seen not to he registerable hy rotation, so it is advisable to interpret transforma­
tion in the general meaning of the word. It will be shown how to rapidly deter­
mine substructure stiffness matrices in case of arbitrary transformation true to 
form and dimensions, together with transformation matrices for essential 
transformations. 

Let us have an arbitrary stiffness matrix (0) in the global coordinate 
system 0 (Fig. 2), and let its local coordinate system be denoted by 1. Let us 
find a transformation to determine the unkno"v,Tll stiffness matrix (CD) in the 
global system. The unknown stiffness matrix may he assigned a local coordinate 
system 2. The transformation to shift coordinate system 1 to 2 (e.g. rotation, 
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Fig. 2 

/ 

\. 
\ 
\ 

/ 

187 

reflection, etc.) is known. (Shifting has to be understood in a broader sense, 
namely e.g. a reflection to a given point cannot be replaced by shifting, never­
theless, transformation is true to form and dimensions.) 

The transformed to an arbitrary point can be written in the form: 

where: 
R2 A12Rl + Bl2 

coordinate vector before transformation: 

coordinate vector after transformation; 

:~:] rotational part of tranformation from 1 to 2; 
a33 

B" D:] t,"",lational part of t,"n,fo,mation from 1 to 2. 
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2 

Fig. 3 

Displacement vectors in the original and the transformed systems are, 
according to Fig. 3: 

U1 = Rr-R; 

U2 = R~-Rb· 

Subscripts refer to the coordinate system, while superscripts identify 
the vector in the given coordinate system. 

Substituting the relation hetv,-een displacement vectors: 

U2 = (A12R~ B 12) - (Al:?Rl + B 12) = AdRr - RD· 

Hence, the two displacement vectors are related as: 

U2 = A 12 U1• 

Assuming in a given node 3 + 3 degrees of freedom to be interpreted 
(displacement vector U, rotation vector V), and the substructure to be trans­
formed to have n nodes, a 6n X 6n transformation matrix can he produced, 
such as (indicating only non-zero elements): 

T12 = A12 

A12 . 

1 2 
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Stiffness equations in their respective local coordinate systems are: 

where: 

Kl = K~ = K stiffness matrix of the suhstructure in its local coordinate 
system; 

r rU-11-, Jl = 

r
Ubl displacement vectors written in local sys­
V~ tems (composed of displacement and rotation 

. vectors); 
Vi 

un 
1 vn 
1 

PVI 
1vIt 

1V~ 
_lvI~_ 

-"T1 
1\2 

M~ 

1V~ 
_J1~ 

load vectors written in local systems (com­
posed of force and moment vectors). 

Transforming displacem en t and load vectors to the glohal coordinate 
system: 

where 

fl = T10 fo and Fl = T10 Fo 

f2 = T20 fo and F2 = T20 Fo 

displacement and load vectors, resp., written in the glohal 
system; 
matrices for transforming from the local systems to their 
glohal counterparts. 

Resuhstituting into the stiffness equations: 

KT10 fo = TIOFo 

KT'.wfo = T20F o· 

_IllTanging yield stiffness matrices (Kb, K6) in the glohal coordinate 
system: 
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(Tfo K T10) io = Po 
K6io = Fo 

(T~o K T20) io = Fo 

K'fdo = Po· 

lVlaking use of the orthogonality of the transformation matrix has led to: 

T-l = T*. 

Stiffness matrix of substructure 1 being, however, assumed to be known 
in the global system, the local stiffness matrix hecomes: 

K = T 1 oK6TiO. 

In conformity with the above relationships, local displacements are 
related as: 

Bv definition, this is identical to a transformation between systems 1 
and 2: 

Arranged: 

Substituted into the relationship for the stiffness matrix written in the 
global system of substructure 2: 

K5 = (TfoTizTlo) K6(TfoT12TlO)' 

This relationship is suitable to determine substructure stiffness matrix 
(K5) derived hy arbitrary transformation from a known substructure matrix 
(K6) by direct transformation (matrix multiplication): 

T = TfoT12TlO 

T- * T*T*T = 10 12 10 

Provided substructure 1 has been written in the global system, and also 
the geometry transformation (T12) had heen referred to the global system 
(0 = 1), the relationship is further simplified to: 

T10 = Tro = E (unit matrix). 
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Hence: 

T-* - E*T*E - T* - 12 - 12' 

This transformation may be obtained after the reduction of the substruc­
ture stiffness matrix, and has the following advantages: 

1. stiffness matrix of identical (inter-transformable) substructures has to be 
produced but once; 

2. identical substructures (with identical connecting points) have to be reduced 
but once; 

3. recurrent substructure stiffness matrices and reduced substructure stiffness 
matrices have to be stored but once. 

In composing the geometrical model, recurr.3nt part units (substructures) 
can be fitted by means of various transformations. The five fundamental trans­
formations true to dimension and form (shifting, rotation, reflection to a point, 
reflection to a straight line, reflection to a plane) permit a simple realization 
of practically any geometrical variation. Transformations can also be linked 
to a chain. Let us apply transformations T1, T2, ••• , Tm in series. No"w, the 
resultant transformation matl'ix 

Just as matrix multiplication, also repeated transformations are not 
exchangeable. Certain transformations are not independent of each other, that 
is, a given geometrical correlation can be described in terms of several different 
transformations [4], 

Transformation matrices of geometrical transformations 

Without detailed calculations, transformation matrices of fundamental 
transformations will be presented in a three-dimensional, Euclidean space: 
a) Shifting (by a given vector): 

A12 = 

G 
0 n 1 
0 

B12 = 

IX'J Yo 
Lzo 
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b) Rotation (by a given angle around a straight line with a given direction vector 
passing through a given point): 

A Al A2 A3 A4 A5 A6 A' - 12 = - 12- 12- 12- 12- 12: 12- 12 

Ai2 = r~ 0 0 .%0 

1 0 Yo 
LO 0 1 Zo 

AI2 = r1 0 0 

°l I 0 

C B 
- --- o I V V 
B C 

o ! l: V f;-, 
1 I 0 0 -J 

Ar2 = rV 0 
A 

0 
j 

I~ 
L 

I 0 0 
i A Tf 

- 0 0 
L L 
0 r. 0 1 v 

Ai:, = I c~srp -sin rp 0 01 
SIll rp cos rp 0 o I 

1
0 0 1 o I 

LO 0 ° 1J 

Af2 =.- T7 
0 

A 
0 

L L 
0 1 0 0 

A 
0 

V 

° I L L 
0 0 0 1J 

6 - 0 0 °1 A12 = 11 
C B 

1

0 
V V o I 
B C 

0 I 0 V V 

Lo 0 0 1 

A{2 = r~ 0 0 XoJ 1 0 Yo 
LO 0 1 Zo 
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where: 

If B = C = 0, that is, V = 0, then: 

An~D ° -~mTJ cos cp 
SIn rp cos cp 

In either case: 

B12 = ""'Ol 
? I 

_UJ. 

c) Reflection to a point (of given coordinates): 

=f -1 

I 0 
L 0 
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cl) Reflection to a straight line (-with a given direction vector, passing through 
a given point): 

42 ') AB 2 AC A12 = 2~-1 ,..--
L L L 

2 AB B2 
1 ') BC 2- '-'--

L L L 

2 AC 2 BC C2 I 

2 -1 J L L L 

B12 = 2xo - 2xo 
,42 AB AC 
---- 2yo --- 2zo 

L L L 

2yo - 2xo 
AB B2 BC 
---2yo -- 2zo 

L L L 

AC BC C2 
2zo - 2xo --- 2vo --- 2zo LJ L J L 

where: L = VA2 + B2 + C2. 
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e) Reflection to a plane (of a given normal, passing through a given point): 

I 4
2 ') AB AC-

A12 = 1-2~ -",,-- -2--
L L 

') AB 
-"'--

B2 
1-2-

BC 
-2--

L L L 

-2 AC BC C2 

J -2-- 1-2-
L L L 

B12 = 2xo 
A2 

+2yo 
AB 

+ 2zo 
AC 

L L L 

AB B2 
+ 2zo 

BC 
2xo-_- 2yo 

L L L 

L 
AC BC 

2zo 
CZ 

2xo-- +2yo 
L L L 

where: 

Let us follow the steps of the method on hand of an example correspond­
ing to Fig. 1. The entire structure is seen to be geometrically constructible 
from t"WO substructures. 

A given substructure comprises inner nodes and connecting points (b) 
and (c), respectively. Accordingly the stiffnf:si3, equation system of the sub­
structure becomes: 

Assuming inner nodes to have no load, and introducing the concept of 
reduced substructure stiffness matrix: 

where: 

it is the stiffness matrix of the substructure reduced to connection points. 

Example on the application 

Reduced stiffness matrices of substructures 2, 3 and 4 can be produced 
by proper transformations from substructure 1: 
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/ 
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z. 
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CJ 

41e. 

Fig . .f. 

7 P.P. Transportation 1512 
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I. Transformation from 1 to 2 
Reflection to pla.ne Xl: 

II. Transformation from 1 to 3 

N= 0 -

Q 
2 

Q 
2 
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Transformation matrix: for the reflection to the given plane: 

A13 = 11 '0 

10 0 
LO -1 

01 -1\ o . 

Ill. Transformation from 1 to 4 

Reflection to plane (%;1' then to plane (1.2: 

197 

Transformation matrix for the given transforme,tion results as a product 
of the former ones: 

o 
o 

-1 

01 
~J . 

In possession of the reduced stiffness matrices of substructures 1 and 5, 
all the other matrices are simple to estahlish, in confol'lnity with the above: 

In order to fit reduced substructure stiffness matrices, stiffness eqnations 
will be partitioned in conformity 'with Fig. 5: 

7* 

-K5 K 5 K5 K5 K 5 K5l 11 12 13 14 15 16 

K5 K5 K5 K 5 K5 K5 
21 22 23 24 25 26 

K~ i K~2 K~3 K~4 K~5 K~6 

K~1 K~2 Ki3 Kt K~5 K~6 

K~ 1 K~2 K~3 K~4 K~5 K~6 

L Iq 1 K~2 K~3 K~4 K~5 Iq6 

-U-5l- -p5-1 - 'I 

u~ P~ 

u~ P~ 

U~ Pg 

U~ Pg 

Lui_ P~ 



11/, I<,~ 

1<;, I<}] 

I<i, 11;2 

1</3 
1I}3 

11;3' I<i; 

I<,~, 

1<}4 

1<;' t K,~ 110 
I1Z, I<Z2 I1Z"II~ l<jiQl<k I<i~ 

5 5 4 4 ~ 5 
'(~'~~L ___J~~-'KI~ L~.~ ____ J I<,( 
1<24 ~_._~ ___ .. _.~.... 1(26 .. /(41 _~ /<4]+K25 

~

l"ir 1<;] /(3; t 1<3~ 25 2 21 5 5 
K34 + K3" 1<3' 1<32 ~ ~.~_.~ K36 1<35 

5 5 2 5 1<,./ __ ~4.2 /<,,] t /(43 1d1<i,';;<I.~ K:, 11/2 1<;, K;2 I<~ t /<4~ Kf5 

l l<l; " ? 2 
11(4 1<;, 1<'2 

I<J3 II]~ 1<;' ___ ~-~~l ~l --~ 
/(~ /(:2 1<13 11;' t 1<;" 

K,~ 

K2~' 
L'_<;_I_I_<' 11;2 _c·==I{._;!..._. ~_.-_-~b] 

/(2~ 
1/3 
"11 

11;, 
I<}, 

f/ig. h 

3 
11'7 
11;2 
1<}2 

I<i, 
11;3 

1<;3+ 1<;6 

K,i 
1<;', 

K,~ 
/(', 

22 

K%s 
K " n 

K2i 

[/(;. I<~, K;~ K3~+ 1<;5 
------."------------

U, 

U2 

U3 

U4 

Us 

U6 

U7 

UB 

Ug 

UlO 

Un 

U'2 

U,3 

U74 

Fi 

F2 

F., 
F;, 

Fs 
F6 

F7 

Fa 
F7 

Fio 

Fi, 

Fi2 

Fi3 

Fi4 

to 
(f) 

t"' 

~ 
l:>:l 

l:2 
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Reduced stiffness matriccs of substructures 2, 3 and 4 are partitioned 
in a similar way. Grouping connecting points in conformity with Fig. 5, the 
stiffness matrix of the complete structure reduced to its connecting points 
will have the following built-up (for the sake of clearness, denoting K~l by Kid): 

The reduced equation system can be solved, followed by calculating the 
nodal displacements of the substructure. In the prohlem concerned, stiffness 
matrices of two substructures (1 and 5) and their reduced are seen to be suffi­
cient. The remaining substructures may be determined by a simple matrix 
multiplication-transformation. (In reductions and fittings, the fact that 
substructures are joined according to Fig. 5 ha;;; been made me of.) 
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