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Abstract

The method presented is advantageous for structures comprising recurrent part elements
by applying the five basic transformations and their combinations, thus eliminating much of
tedious data input. Substructuring avoids the need to produce consecutive stiffness matrices
and time-consuming reduction. Recurrent structural parts can be composed to panels — with-
out high-capacity mass storage — suiting the rapid composition of various models in an explicit
form (reduced to appropriate points).

Introduction

Two problems facing us in computerized finite element analysis are in-
creased memory and mass storage capacity demand as well as long running
time. The so-called substructure method lends itself to the analysis of complex
structures or of simpler structures by minor compters. Without entering into
details of this method, it essentially consists in decomposing the structure into
part units (substructures), then producing their stiffness matrices, to be reduced
subsequently to connecting points (common points of substructures) [1].
Thereby it is sufficient to solve the reduced equation system and equation
systems of each different subsiructure.

In order to increase the efficiency of this method, let us have a lock at
the time-consuming steps of the substructure finite element method, such as:

1. to define the geometry;

2. to produce the substructure stiffness matrix;

3. to reduce the substructure stiffness matrix to connecting points;
4. to solve the equation system of the structure;

5. to solve substructure equation systems.

The substructure method is advantageous as it involves much fewer
operations hence has a shorter running time demand compared to solving the
complete equation system. Another advantage is the possibility to examine the
effect of modifications within a substructure independent of the other substrue-
tures.

Let us present now a method that aids in reducing running time demand
for steps 1, 2, 3 for structures comprising several parts of identical geometries.
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Transformation algorithm of a substructure stiffness matrix

The structure in Fig. 1 can be decomposed into five substructures, the first
four having an identical geometry. Stiffness matrix of substructure 1 may be
supposed as strictly related to those of substructures 2, 3 and 4. This relation
is similar to producing the stiffness matrix of an element in the local (element-
bound) coordinate system, to be transformed into the global coordinate system,
i.e. a transformation by rotation [2], [3]. Actually, the problem is to produce

the stiffness matrix of an arbitrary substructure in a position different from
that of a substructure known in the global system by simple means, using its
stiffness matrix, without repeatedly composing it. Substructures 1 and 2 are
seen not to be registerable by rotation, so it is advisable to interpret transforma-
tion in the general meaning of the word. It will be shown how to rapidly deter-
mine substructure stiffness matrices in case of arbitrary transformation true to
form and dimensicns, together with transformation matrices for essential
transformations.

Let us have an arbitrary stiffness matrix (@) in the global coordinate
system 0 (Fig. 2), and let its local coordinate system be denoted by 1. Let us
find a transformation to determine the unknown stiffness matrix ((2)) in the
global system. The unknown stiffness matrix may be assigned a local coordinate
system 2. The transformation to shift coordinate system 1 to 2 (e.g. rotation,
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reflection, etc.) is known. (Shifting has

to be understood in a broader sense,
namely e.g. a reflection to a given point cannot be replaced by shifting. never-
theless, transformation is true to form and dimensions.)

The transformed to an arbitrary point can be written in the form:
where:

R, = ApR, + By,

)]
R =1y coordinate vector before transformation;
1 1
5 |
Xz
R = | coordinate vector after transformation;
<2
@1 @13 O3
A, = | @y @y Gy3 | rotational part of tranformation from 1 to 2;
| (31 Qg2 Qg3
b,
By, = |b,

translational part of transformation from 1 to 2.
by
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Fig. 3

G

Displacement vectors in the original and the transformed systems are,
according to Fig. 3:
7 — R2 1
U,=R — R
T 2
U, = R — R..

Subscripts refer to the coordinate system, while superseripts identify

the vector in the given coordinate system.
Substituting the relation between displacement vectors:

- 2 ; 2
U, = (ApR} + Bp) — (ApR) + Byp) = Ap(RY — Rj).
Hence, the two displacement vectors are related as:
U, = ApU;.

Assuming in a given node 3 - 3 degrees of freedom to be interpreted
(displacement vector U, rotation vector V'), and the substructure to be trans-
formed to have n nodes, a 6n X 6n transformation matrix can be produced,
such as (indicating only non-zero elements):

Tpo=1 Ap
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Stiffness equations in their respective local coordinate systems are:
Kifi=F,
K% fz = F,

where:

K! = K2 — K stiffness matrix of the substructure in its local coordinate

system;
fi=TUI. fo= [ Ul]displacement vectors written in local sys-
Vi V) |tems (composed of displacement and rotation
. - |vectors);
vy
K Rl
F, = [ NI7], F, = [ N} |locad vectors written in local systems (com-
M} M} | posed of force and moment vectors).
Np %
| M7 | M7 |

Transforming displacement and load vectors to the global coordinate
system:
fi=Tf, and F, =T, F,

fo=Tafo and F;=Ty F,
where
fo Fo displacement and load vectors, resp., written in the global
system;
Ti0 Tog matrices for transforming from the local systems to their

global counterparts.

Resubstituting into the stiffness equations:
KTIOfO = T]OFO
KTy fo = TaoFy.

Arranging yield stiffness matrices (K], K3) in the global coordinate
system:
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(T;ko KTIO)fO = Fo

Kéf(): F,
(T;;OKTZU)fO = Fo
K%foz Fo-

Making use of the orthogonality of the transformation matrix has led to:
T-1=T%

Stiffness matrix of substructure 1 being. however, assumed to be known
in the global system, the local stiffness matrix becomes:

K= T1 OKOTIO

In conformity with the above relationships, local displacements are
related as:

f-z == (Tonfo)f 1+

By definition, this is identical to a transformation between systems 1
and 2:

Typ = To0 T
Arranged:
Tyo = TiTy,
® vk
T5 = Tyl

Substituted into the relationship for the sti{ffuess matrix written in the
global system of substructure 2

»
Liw

2 Bt 1o
Kj = (TioI1T10) Ko(TipTeT0).
This relationship is suitable to determine substructure stiffness matrix

(K3) derived by arbitrary transformation from a known substructure matrix
(K§) by direct transformation (matrix multiplication):

T = Ti::oTrle 0

T* = T:I?OT??TIO

K?=T* K, T

Provided substructure 1 has been written in the global system, and also

the geometry transformation (T,,) had been referred to the global system
(0 = 1), the relationship is further simplified to:

T, =T5 =E (unit matrix).
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Hence:
T=ET,E=T,

T* = E*ILE = T},

This transformation may be obtained after the reduction of the substrue-
ture stiffness matrix, and has the following advantages:

1. stiffness matrix of identical (inter-transformable) substruetures has to be
produced but once;

2. identical substructures (with identical connecting points) have to be reduced
but once;

3. recurrent substructure stiffness matrices and reduced substructure stiffness
matrices have to be stored but once.

In composing the geometrical model, recurrent part units (substructures)
can be fitted by means of various transformations. The five fundamental trans-
formations true to dimension and form (shifting, rotation, reflection to a point,
reflection to a straight line, reflection to a plane) permit a simple realization
of practically any geometrical variation. Transformations can also be linked

to a chain. Let us apply transformations T;, T,, ..., T

., T, in series. Now, the

resultant transformation matrix

T=T7%...T,

Just as matrix multiplication, also repeated iransformations are mot
exchangeable. Certain transformations are not independent of each other, that
is, a given geometrical correlation can be described in terms of several different
transformations [4].

Transformation mairices of geometrical transformations

Without detailed calculaticens, transformation matrices of fundamental
transformations will be presented in a three-dimensional, Euclidean space:
a) Shifting (by a given vector):

A,=1[1 0 0]
6 1 0
1 00 1
B,, = [0 |
Yo
| o
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b) Rotation (by a given angle around a straight line with a given direction vector
passing through a given point):

Alz = A%'QA%A?QA?QA%A%AIT:)

AlL,=[1 0 0 =,
0 1 0 ¥,
100 1 2
AZ=T1 0 0 0]
0 _C B 0
v
0 s < {
vV i
[0 0 0 1
Alsz = —X 0 __ﬁ Q—
L L
6 1 0 0
40 Iy
L L
06 0 1
Al,=]cosg —sing 0 0]
sin @ cosp 0 0|
0 0 10
| 0 0 0 1]
AS, =] V 0 A 0—
L L
6 1.0 0
e
A
L L
. 0 0 0 1]
A% =1 0 0 O]
0 £ 3 0
Vv
0 _BC 0
VvV
LO 0 0 1]
AL=[1 0 0 «x,
01 0 y,
0 0 1 3




ACCELERATE FINITE ELEMENT 4ANALYSES

where: V=|B+C*

If B= C = 0. that is, V' = 0. then:

Ap=1]1 0 0
0 cosg —sing
0 sing cos @
In either case:
B =

A= —1 0 O—|
0 —1I 0
0 0 —1
B= _21‘0_
2y,
2:0_1
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d) Refleciton io a straight line (with a given direction vector, passing through

a given point):

su[2 g pAB T
) L L L
2‘43 232—1 2£€
L L L

2;’%_6. Q.Ii(_:_ 2C'~_1
r A2 AB

B,=|2x) — 22y — —2y, — —2z

12 0 0 I Yo I 0
AB B?

2y0 — .‘2x0 -—E— — &¥p —E —_— 220
AC BC

2z — 2%, — — 2y, —— —2z

5 0 0 I Yo I o

where: L=yA2 L B>+ C.
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e) Reflection to a plane (of a given normal, passing through a given point):

Ag=|1-228 _ 4B, 4CH
L L L
__2"13 1__232_ __2?_9
L L L
_,4c  _,BC, ,C
i L L L |
B 4= AB ACT
By = Zxo? -+ 2%, -L—+21’~o I
AB B2 BC
2% L2y, o 25, 22
p I Yo I 0 I
AC BC c?
i 29 I Yo 7 0 L__

where:

Let us follow the steps of the method on hand of an example correspond-
ing to Fig. 1. The entire structure is seen to he geometrically consiructible
from two substructures.

A given substructure comprises inner nodes and connecting points (b)
and (c), respectively. Accordingly the stiffness, equation system of the sub-
structure becomes:

'K, K,.] [T,] [F

(ch - chKglec) Uc = Fc - (chK;ol)Fb

Assuming inner nodes to have no load, and introducing the concept of
reduced substructure stiffness matrix:

KU,=F
where:

K is the stiffness matrix of the substructure reduced to connection points.

Example on the application

Reduced stiffness matrices of substructures 2, 3 and 4 can be produced
by proper transformations from substructure 1:
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Bp = | Xeo

Yo
Zo

4/a.

Yo
Zo

4/c.

Xo

Yo
Zo

In

o

H
e

b3

"
O W >
Gt

4/e.

7 P.P, Transportation 15/2
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Transformation matrix for the reflection to the given plane:

Ay=11 "0 0]
|0 0 —1
lo —1 o

III. Transformation from 1 to 4

Reflection to plane «,. then to plane o,:
Transformation matrix for the given transformation results as a product
of the former ones:

In possession of the reduced stiffness matrices of subsiructures 1 and 5,

all the other matrices are simple to establish, in conformity with the above:

@:
|
=]

ll

In order to fit reduced substructure stiffness matrices, stiffness equations
will be partitioned in conformity with Fig. 3:

I—K‘il K%z Klla K%:I Uﬂ = _F;I

K} K3 K Koy U} F;

Ku KKKy, | | Ud Fj

| KL KLKKL | [ U] | Fi

_K?I ?2 '?3 r?4 7155 K?s_ _U?_ =T '?_
K3 KL K3 K3 KKy | | U3 3
K3 KL, KL K3 K5 K | | U3 F3
K31 K, K3 K, K5 K U3 F3
K K5, KL K, K K2 | | U3
| K K, K K K KGs | | Us| | FR |

%




A
Ko K Ky K,

Iig, 0

Ko KL KK KD KK ki | |«
Kiy Kl KhKy KUK G KG K Kb Kb KbekS
Ky Koy Kavks Kavky,  Keo Kn | Kig Kss
KS K KAYKDG KEGKL K KR KS KD KaKE Kis
R R S - A AN
/(.?23 K;C /(227 K;?
i KK, K
Ky K Kz Kz
| W ke K Kk 65 K Kk K
——————— o Ky Ky KD
Kz 5 Ki K
|16 ekl KK, IR

)

J

SN an g n ;m

w

FOIFA T
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Reduced stiffness matrices of substructures 2, 3 and 4 are partitioned
in a similar way. Grouping connecting points in conformity with Fig. 5, the
stiffness matrix of the complete structure reduced to its conmecting points
will have the following built-up (for the sake of clearness. denoting K!; by K.)):

The reduced equation system can be solved, followed by calculating the
nodal displacements of the substructure. In the problem concerned, stiffness
matrices of two substructures (1 and 5) and their reduced are seen to be suffi-
cient. The remaining substructures may be determined by a simple matrix
multiplication—transformation. (In reductions and fittings, the fact that
substructures are joined according to Fig. 5 has been made use of.)
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