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Summary

Linear elasto-dynamic variational principles explicitly comprising initial conditions
have been developed in the '70s. The principle of total potential energy will be applied to
establish the motion equation of thin-walled open-section bars.

Iniroduction

Open-section bars are common in skeletons and frameworks exposed to
dynamic loads. (Skeletons and frameworks of buildings, technology equipment,
vehicle undercarriages, ete.). These bars are mainly exposed to tension-com-
pression, bending and torsion. Bar ends incorporated (usually welded) in
skeletons or frameworks are not free to displace, thus, often. in addition to
Saint-Venant torsion, also torsion due to inhibited warping has to be taken into
consideration.

The motion (equilibrium) equation can be directly written on mechanical
considerations, just as by using the total potential energy functional referring
to the given single selected bar. This latter method has two noteworthy advan-
tages. Partly, together with the motion equation, also boundary conditions are
obtained so to say automatically (and also the initial conditions for the velocity)
that are not simple even in this case. And partly, (approximate) solution of the
motion equation may rely on common, efficient functional analytic methods,
including the actually rather generalized finite element method.

Let us note that the discussed motion equation—without deduction
and boundary conditions—is alse found in [1].

1. The principle of total potential energy
Obviously, the so-called direct generalization of the scalar product

(bilinear form) utilized for developing variational principles in linear elasto-
statics in the form

[Uyy Us] = [ [ Uywt) Un(st) dd L1
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is not symmetric about term [0U/dt, U], therefore operators comprising
9. . . .

operand 5, 2T not of the potential type, hence in general are unsuitable for
t

handling initial conditions of linear elasto-dynamies. (In Eq. (1.1), V is a single

coherent three-dimensional open domain, 0 <t < ¢, a confined time interval,

while U,(x,t), Us{x,t), U(x, t) are quadratically integrable functions.)
Again, evidently, scalar produect

(Uy U = [ Uylat) Uws 1o — )dv e (12)

is symmetric about term (§U/ét, U), that is, it perfectly suits the development
of variational principles of linear elasto-dynamics.

Among relevant research, the most important ones are those due to
Gurtin [2, 3], Tonti [4], Oden and Reddy [5] and Reddy [6, 7]. Gurtin was the
first to apply sealar preduct (1.2) (convolution) for developing linear elasto-
dynamic variational principles implicitly containing the initial conditions.
Tonti demonstrated scalar product (6U/dt, U) to produce a symmetric
variational principle referring to the thermal conduction equation.

Variational principles published by Oden and Reddy explicitly contained
initial conditions.

In linear elasto-dynamics, like in elasto-statics, variational principles
referring to the total potential energy, the complementary energy and the
so-called Reissner variational principles are of practical importance. Actually,
the principle of total potential energy will be involved, with the following
so-called total energy functional:

ty

B(u) = %Jj}hg(x) )ity — t)dadt - -;— f J | E() : e(x,0)]

(U 0y

to
te(x,ty — t) dedt — § § flwt) u(x,t, — t) dadt
o v

__of;g 1(x,t) u(x,ty, — t)dxdt —-Vg o(x) vO(%)u(x,ty) dx, (1.3)

where:
0<t<t -confined time interval;
x = x(x, y, z) coordinate of place of a point of the given solid;

Vv domain occupied by the given solid;

4, boundary (surface) of domain V;

A, part of surface A4, with given surface forces;
u = u(x, t) displacement vector field;

o= p(x) volume intensity of mass distribution;

E = E(x) fourth-order tensor of material characteristics;
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g = g(x, t) strain vector field;
f=1f(x,t) intensity of volume forces;
i = #x,t) intensity of prescribed surface forces on surface A4,
v% = v%x) initial velocity distribution specified for the given solid;
(:) = 8(.)/8t (symbol of partial derivation with respect to ?)
: symbol of twofold scalar multiplication.
Functional @(u) involves the following a priori conditions:

o(x,t) = E(=) :e(x,t) (1.4)
1
clit) = = [yu(e.t) + (vu(1)T] (15)
u(x,ty = fix,t), x€A , (1.6)
u(x,0) = ux), 2£V, (1.7)
where:

¢ = o(x,t) stress tensor field;

V() = grad (.);

A, = part of surface 4, where displacement is given as boundary
condition, A, = A,UA4,, A,NA4,=6 (J is symbol of an
empty set);

f(x,t) =  specified displacement over surface A4,

u®(x) == specified initial displacement over domain V.

(1.4) yields the material law, while (1.5) to (1.7) provide for the kinematic
possibility of displacement u(x.t). Deductions for functional ®(u) and for
condition (1.4) to (1.7) are found in [8].

2. Assumptions for writing the motien equation

The open-section bar has to be modelled as a one-dimensional continuum.

The bar is assumed to be prismatic, slender, of a homogeneous, isotropic

material. (Assumption of an orthotropic material causes no difficulties either.)

Let the bar be exposed to external forces and moments seen in Fig. 1. and by
volume force

f( 2, 2 )7 = (2 2 3 0), il 35 5 1), fulw, 35 2. 8)) (2.1)

In conformity with symbols in Flg 1 N is the force along the bar,

Qy, Q2 are shear forces, M the torque, /\’I},, M are bending moments and B the

so-called bimoment. Axes y and z are assumed to be principal axes of inertia

of the bar cross section. T (%, ¥, z7) is the torsion center for the cross section of
coordinate x.

Displacement of an arbitrary bar point is obtained from

u = (uxy.z51), wlxy.zt), u(xy.zt)) (2.2)
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u(x.y.5.8) = Uep(x,d) — upr(xd)y — upr(x,t)z —

— ¢’ (xt)o(y5), (2.2.a)
uvyy.zit) = uyp(xt) — (2 — 37) ¢(xt), (2.2.b)
uxrnt) = () + (v — yr)g(xa), (2.2.0)

where:

— up(x,t), up(x.8), u.{xt) displacement coordinates of an arbitrary point

— ()'=58()/3x;

{(x,t) of the (straight) torsion axis;

— (=) angle of rotation of the cross section of coordinate x and normal
to the ¥ — x axis about the torsion axis (positive if the vector
of rotation points to the positive direction of the x-axis);

— op(y.z)  warping rate referred to torsion center T (determined clock-wise
on a surface directed by an outer normal unit vector pointing to
the negative direction of the x-axis).

Surface loads (stresses) specified for bar ends are described by equalities:

HO0.y,5,)T = (—&(0.y.2,t), — T (0.y.5.1), —T3:(0.y.5.1)), (2.3a)
i(ly.zt)T = (6(Ly.z.t), Toy(lysz:t)s Toolliyo21)), (2.3.b)

(Negative sign in (2.3.a) refers to the surface of an outer normal pointing to the
negative direction.) Stresses 7 (0, v, z, t) and £ (I, y, z, t) are assumed to arise as
sums of stresses corresponding to elementary ones acting on the bar.
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Initial velocity distribution has to be specified according to the assumed
distribution field u ((2.2) to (2.2.c)), that is:

Dy )T = (627(x) — () — 03z — #(B)or(y.),

r(x) — (5 — 2)2%x),  3r(x) + (v — y)="(x)), (2.4)
where v v, vir, %9, vyT v}y and #’° are initial values at time t= 0 of
velocities and angular velocities i, 1iyrs s 05 typ tyr @ndfor of their
derivatives with respect to x.

Obviously, also kinematic boundary condition #(x.t) and initial displace-
ment u%x) in conditions (1.6) and (1.7) have to be specified in conformity with
the assumed displacement field (2.2) to (2.2.¢).

Deformation of open-section bars have been detailed in [9] and [10].

3. Establishment of the motion equation relying on the principle of
total potential energy

For the sake of understanding, functional @(u) will be written in the
concrete form for the examined problem term-wise, and after simplifying
notations, each term will be summed in conformity with (1.3).

Expanding term for the kinetic energy by means of Eqgs (2.2) to (2.2.¢):

Iy

B(u),, — % f J o(x)i(x,) ity — £) dx de

K

0 v
to 1

- "H J Jeliarlet) — dinle) y = idrlet) = — /() 0]

00 A
[tor(mity — £) — wyp(xity — 1)y — uip(xty — t)s — @'(x.0y — t) 0r(y:5)]
-+ dy dz dx di

ty 1

5 [ [ fetisnte) = ¢ —oiealisete, — 0 = zitess—0)]
dy ds dx

| [ [etiurten + o=ynitenlinetet=s + & = sriws—]
dy d de e

= égAJfaf iy (2,0) tap(ity — 1) dx dt

0 0

0D | b
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t I
+ -;’-QA J f (ityr(nt) -+ 220t ity (ot — 1) dox dt
00
1 1
50 [ [ irlesyigrloty — ) d de
00

f, 1
04 f J [ap(%:8) — yr(ed) Jiar(t, — ) dt
Q0

£ 1
1 . . .
+ eI, j J [ty — 1) da dt
[

t
1 . . . .
+>0 J‘ j (@) — A(yityr(ed) — spivyr(w2)] ¢ty — 1) do dt
¢ 0

i 1

oo J’ () & (o8 — 1) dac d, (2.5)
)

o
0

+

DD | =

where:
p == constant, mass distribution intensity;
A = bar cross section area;
I,, and I,, second-order moments of inertia about axes y and z of the
bar cross section;
I, (polar) second-order moment of inertia of the bar cross section
referring to torsion center T}

I, = fwgf(y,z) dy ds second-order moment of warping.
A

In calculating integrals with respect to surface 4, it has been taken into
consideration that

(ydyds=0,{ z2dydz=0, { yz dy dz= 0,
A A A

and assumed that in determining the distortion rate w4(y,z) the origin is chosen
to meet relationships

{ wr{ys)dy dz = 0, AX yor(y.z)dy dz = 0,

zor(y,z) dy dz = 0.

B
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The term for strain energy is expanded to:

B(u), =~ f f [Ex) : e(mt)]: elmt, — t)d dt

= —EJJJ e(x,y,5.8) + efx.y.5.t, — t) dy dz dx dt

00 A

i
i

% ijgu(:w @ (%,8y — t)dx dt

= %E j j j [ulr(at) — wlr(et)y — wlr(m)s — @' (sd)or(y:2)]

090 A

(st — t) — uyp(xg, — t)y—uzr{xity — t)z — @ (xy —t)wr(y,z)]
o dy dz dx dt

£ 1
+ %I’G J J ¢'(x.2) ¢ (2t — t)dx dt

00

- -i—EA j J wor() ulp(zity — 1) dx di

4 %EIQ J 9" (x:2) "(x,ty — t) dx dt
00
t 1
+%I, ﬂ(p(xt) o (5,ty — 1) dx dt 2.6)
where;

e —— OB, 3 ) . . L LI
E = T2 G = 1+ ) E* is Young’s modulus; and v Poisson’s ratio;
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I, second-order moment of Saint Venant torsion of the bar cross section;

E.\'(x7y95,t) = @i(%gj_{ﬂ .

The term for volume force work is expanded by means of (2.1) to (2.2.¢).

B(u), = O{ § ) u(es, — 1) duds

1, 1 ;
= 05‘ lf {P}é‘f\(x’h:t) dy dz l"xT(x=t0 - t)
— AE‘ folmy.zt) y dy ds ulr(x,t, —t)
—  flyinas dy dz wialedy — 1) — | fuleyizd) orlyd)

s dy dz @' (x,8, — )
+ [ Aleyzi)dy dz uyr(zgy — 2) + § filxy,st) dy d=
A ’ A

Cur(xity — )

+ ] Ly — 30 fegs) = (= — 20) flyea)] dy ds

cplxgy — 1)} dx dt
[
=0f 05‘ {gu(xt) ur(xty —t)

+ qu(xst) uyr(x.ty — ) -+ my(x.t) uir(x.t, — 1)
+ g(xt) wr(wty — ) — my(xt)ulr(nt, — 1)
+ myp(xt)p(et, — 1) — m(xt)e' (v, — t)}dx dt, 2.7

introducing simplifying notations for integrals on surface A, with the following
meanings:

qx 4y 4. are intensities in directions %, y and z of volume forces acting on the
bar modelled as a one-dimensional continuum (forces acting on unit bar length).
m, and m. are intensities of bending moments from volume forces about axes
y and z, m; is intensity of the torque due to volume forces and referred to the
torsion axis of the bar, while m (x,t) is the intensity of the warping moment
due to volume forces (moments acting on unit bar length).

The term for the work of surface forces will be expanded by means of
(2.2) to (2.3.b).

)

D(u), zong (x,8) u(x,tg —t) dx de

I R -
= oj Aj [[(0.y,5.8) u(O.y.sty — t) + Uly.zt) u(ly.zt, — 1)
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- dy dz dt
OY (- ~J 8(0.y20) dy dz uxr(Osty — 1) +
+Aj 0(0.y,2t) y dy dz ul(0,t, — t)
§ 6(0.y.51) 5 dy dz v (0.5, — t) +
AS 5(0-y5:t) wr(y.z) dy dzg’(0.ty — ¢)
—:—Aj T43(0.y.2:1) dy dz u, (0.5 — 1)
~,—Aj T7..(0.y.2.t) dy dz u (0.2, — )
— [ [l0t) (v = 77) — £(0.20)(z — 21)] dy d= (04, — )
+ J olyai)dy dz ug(lty — 1)
— § 6lyatly dy = uir(lty — 1)
——AS o(Ly.z8) = dy ds uir(lLiy — ¢)
- f o(Ly.zt) or(y.z) dy ds ¢'(Ltg — 1)
— j To(lyzt)dy dz uyp(lt, — t) -Af To(Ly,zt)dy ds w{lity — )

TAS [Twllymt) (v — ¥7) — Tollysd)(z — ap) ] dy dag(li, — £)} di

= [ (I¥xt) warlooto — OIS
— [0y(5:8) wyr(ty — )35 — [Mfxt) wjr(xto — £)]i2h
— [0uxt) werlwto — ) + [My(wt) (it — £)Eh
4 [M(x.t) p(xaty — 0)]555 — [B(xd) ¢ (w20 — 0) 525} di . (2.8)

Simplified symbols introduced for integrals on surface A are interpreted
in Fig. 1 and the relevant comments.

Bending moments M, (0,t) and M,(l,¢t) are affected by the negative sign
since assumed displacement (2.2) involves a bending moment pointing to the
negative direction of the y-axis.

The term for the initial condition specified for velocity distribution is
expanded by means of (2.2) to (2.2.c) and (2.4).

D(u),. = VS @(x) vo(x) ulx.ty —t) dx
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= T  {[s8:(m) — o)y — vz — #%) or(y)]

Nfurlnte — whr(xty) ¥ — Wrlmto) — ¢/ (5g) oy:2)]
+ [oyr(®) — (& — =) 2@D)] [uyr(wte) — (5 — 21) plonto)]

P
= {odetel) uurle 1)

0 A0 (%) 4+ sr(%)) wuyr(xte) + 0L w5%(%) ulr(x.ty)

+ 0A4(vir(x) + 59%(x)) ur(xto) + oLy (x) wir(xito)

L) ¢/ (z0)} d.

o
[—oA@W2r(x)yr — vyr(x)zr) + oI r20(x)] @(x.t,)
0

or(®) + (v — yr)=%=)[wr(xte) + (v — yr)o(x.te)]} dy dzdx

(2.9)

Before writing functional @(u) in conerete form, let the following simpli-
g g simp.

fied notations be introduced:

(ohyr = | | alwt) bty —1) d ds
00
ty

(&hya. = § [8xt) h(xto — 1)jizh de

(o= [ lwo) i) dx.
Utilizing (1.3), (2.5) to (2.9) and (2.10.a—c):
B(u) = D(u), + O(u), — P(u)y — P(u)a — P(u),

1 . . 1 , ,
= ;9—4 {lyr, Uyr)p + ;E —4<u'x7‘= Uity R

— <ﬁ7, Usr) Ay — QALRT, Uery

1 . Lo
_:" ; Q-‘4~<uy7' '”:'" 1@, u‘yT>R "L

1 o 1
+ 5 QI:z/\u)’«'Tﬂ u’yT>R -+ ;EIZE(u;T’ u;T>R

&

— {gy: uyrpr — (M, u;T>R + <Qy= uyT>Aa -+

- Q4<vg’1' + zraf, uyT>0 - QIzz<v;'%‘v uj,)T>0

1
T

QA<ucT - quE u2T>R T

1O | =

1
[}

oL, (itlr, Uy p + “EI3 W Ugrs Wi R

wu—a

(_ﬂfz, u;T>Ad

(2.10.2)

(2.10.b)

(2.10.c)
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— (o DR + (g WD R+ (Q tard 4y — (M, uird a,

- QA<'”(2)T — ¥1#% U)g— QIyy<'U;g‘o Uy

1 . ) : ]
-+ 3 ol 19 — Altryr — UyrZr)s POR +
1 AN I 1 ” "
+ 5019 9O r 4 S ELLY", ¢'0r
1 1 s 7 ~ 1 7 - \
"T‘é‘ItG<§D > P >R - <mxT7 Qr T <mm @ >R — <Mx5 ‘;D>Ag -

+ (Bpda, — o{—AWiryr — virzr) + Lru®pdo — olo(# %9 s (2.11)
with coherent terms (scalar products) side by side. In Eq. (2.11), terms where
the second factor is the same—irrespective of deriving with respect to place
and time-—belong together.

Displacement u(x,t) with the minimum of functional 0 u is known to
meet also the motion equations wanted, that is, relationships for this displace-
ment u(x,t) yield the motion equations wanted.

To establish the equation for the minimum place of functional @(u),

5B(u, Su) = 0 (2.12)

has to be applied, where 6@(u, du) is first variation of @(u) with respect to u.
From (2.11):

0D (u, Su)

= (o, Styry g + (EAuir.0uer) g — (o OUxryr
— <N, Surya; — {oAvYr, dury,

+ {oA(tyr + 219, Oty p -+ (ol W, OuyryR

+ (Eluyr, Suyrpr — {gy dy1or

— (g, Sufrdp + {Qys Sttyrd a; + (M, 001> 4,

— LpAWdr + 57%°), duyryo — ol wir0ur g

+ (oA, — yrP)s Sttryp + {olyiir, duzdp

+ (ElLyu;r.0u3m) R — 01 R

+ (my, duirdg + (QaOurd a, — (MU a,

— (oAl — yr#®), Sur)o — (ol duirde

+ (oI prp — 0Alitryr — tyrar), 0P

+ el 9.0 g + <EL9", 6¢")

(LG, 89"y — (Mgsbp) g + (Ms0p' > — (M9 4,
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+ (B,og">a, — (— oAy — virzr)

+ ol pr#%09) — {elox'%00") . (2.13)
Possible reductions in (2.13) need transformation relationships
(g:h'yp= —(g's hyg + (g DA, (2.14.a)
and
(& hyr={& bpr+ (& Iy — {h: 8- (2.14.b)

Validity of (2.14.1—b) is understood from defining equality (2.10.a), according
to rules of partial integration with respect to place and time coordinates x and
¢, resp., and defining equalities (2.10.b—e).

Conveniently utilizing equalities (2.14.a—Db) it is:

80(u, du)
= {gdil,y — EAujr — q0uypp + (EA uip - ﬁxTeéuxT>Aa
+ (ediyy — oAvir.du.r,
+ (o A(ilyr + =p§) — oliiyr + Eluy — g, + mLouyr)p
+ (oLt — ELufy — ma -+ 0you,ra,
+ (ElL.ujr -+ M~.6uy> Ay
+ {eAl(ityr + 579) — (vhr + 27%°); Suyr),
<OI-~(UyT — %), 5“\1/0 + < —4(ii~r — ¥1¢) —
— oLyl + ELyl¥ — . — mj, duryn
-+ <QIyyii’zT — ElL ur + m, + Q:: Ou Ty A,
+— {ELyulr — _\A_!' . Dulry A,
+ (oA[(.r — 37”) — (Lor — yr®0uyr)g
+ {elyy(uir — v, oulry, + {olprg — oA(ryr — dyrar)
— ol,§¢" — I,Gg" + EI¢" — m. — m[, d¢dg
+ Colof’ + my — ELg"” + LGy — Mob¢)a,
+ /ELg"+ B.op"ya, + (ol (¢ — #°) + 0A[0Syr — 29777)
— (eryr — Uyra7),00) ¢ + {olog" — 01,2000 ), - (2.15)

Since kinematically possible variations of displacements and of angular
rotation du . (x,ty—t), Su.p(v.to—t), Oup(x.ty—t), dp(x.iy—1t) resp., (and their
partial derivatives with l'éspect to place coordinate x), meeting this restriction,
may be arbitrary, making use of (2.12), (2.15) yields, the wanted motion
equations:

oAt r(x,t) — EAulr(x.t) = gq.(x.t), (2.16.a)
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0A(iiyr(t) + zi() — oLaiilr(vt) + ELul¥(xy)
= q,(x,t) — my(x.t), (2.16.b)
QA(ii':T(xet) - }’T‘i(xﬁt) - QIyyii’gT(xvt) ':— uz’I‘<x t)
= gq,(x.t) + my(x,t), (2.16.¢)

ol yr(¢i(e,t) — pA(lr(x.t)yr — dyr(x.t)zr) —
— olp"(x) — L6#"(s4) + ELg(x)
= mp(x,t) + m,(x.t), (2.16.4)
where 0 <{x <{l and 0 <t < ¢, boundary conditions
EAur(x,t) — N p(x) = 0,
I igr(x,t) — my(x,t) — Elujp(x,g) + Q>(x t) = 0,

=~

~~
[N
s

——
[
—
_\1
e

EIr(xt) - My(xt) = 0, (2.17.¢)
ol itir(x,t) + my(xt) — ELulf(xt) + Quxg) = 0, (2.17.d)
EIur(x.t) — My(xg) = 0, (2.17.¢)
ol @ (x.2) + my(x,t) — EL " (x,2) + LGy (x8) — M (x,2) =0 (2.17.)

EIQ¢'!(x,t) —:‘ ﬁ(x,z‘.) =0 .

~
)
—
-

)

p—

where x = 0, or x = [, and 0 << < ¢, as well as initial conditions

iL.CT(x.O) — 29(x) = 0, (2.18.a)
i1 (:0) + 219(0) — [02(8) + 2r20(x)] = 0, (2.18.)
u\T(« 0) — v7(x) = 0, (2.18.¢)
fer(50) — yr9(0) — [125(3) — yr()] = 0, (2.18.9)
(2,0} — vI%(x) = 0, (2.18.¢)
oL [§(w0) — #°()] + oA (R)yr — obr(x)sr)

— (tr(%,0)yr — 1,7(x,0)27)] = 0, (2.18.1)
¢ (2,0) — 2/%(x) = 0, (2.18.9)

where 0 < x <L

Initial conditions for ¢(x.0). i,r(%.0) and 1.,(%,0) may be simplified in a
form by expressing terms vr(x) — 1i,7(%.0) and vir(x) — wyp(%,0). making use
of (2.18.d) and (2.18.b), by means of ¢(x,0) — #°x). The obtained (2.18.f) yields
initial condition ¢(x,0) — #%x) = 0 vyielding, in turp, initial conditions
zi}‘T(;‘c,O) — L;)T(x) = 0 from (2.17.b), and y_;(x,0) — LgT(’\.) = 0 from (2.18.d).

Relationships written for a single bar are easy to generalize for systems
of interconnected bars, not to be detailed here.
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Conclusions

Variation principles are efficient in research on mechanical problems.
They throw a peculiar light on mechanical problems, likely to add momentum
to further development. This is convincingly exemplified by their importance
for the development of the finite element method (theoretical fundamentals
and extension of sphere of applications).

Mathematical approach to wvariational principles makes functional
analytic means available, underlying research and development of approximate
(numerical) mathematical methods, indispensable in mechanics.

Another valuable feature of variational principles is their permitting
integral, complex handling of mechanical problems, as pointed out by the
method described above. Namely simultaneous treatment of motion equations,
dynamical beundary conditions and initial eonditions of velocity in a single
relationship minimizes the possibility of mistakes,
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