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Summary 

The paper presents a nonparametric identification method for the determination of the 
kernels of nonlinear analytic Zadeh models if the input signal is a Gaussian stationary auto­
regressive process. 

Introduction 

In recent times the nonlinear system-identification has gone through an 
important phase of development. The adaptation of modern mathematical 
tools [5] has led to the satisfactory principal solution of certain nonlinear 
differential equations using Volterra and analytical Zadeh functional series 
[7,8]. The analyi:ical Zadeh functional series, the Zadeh models make it possible 
ity to solve important types of nonlinear differential equation where the right 
side of the equations has a nonlinear character "'with unknown parameters 
typical cases of which are the nonlinear vibrating phenomena (e.g. in the 
modelling of vehicle system dynamics.) [9, 10]. 

In spite of the real importance of these nonlinear dynamic models, 
unfortunately, until now there are very fcw statistical results on their identi­
fication. 

Therefore, the authors of this paper recently introduced the nonlinear 
analytic Zadeh model for the inputj output representation of differential 
equation. [9, 10]. We dealt \vith the identification of these continuous Zadeh 
models where the input was a Gaussian white noise process. 

Unfortunately for the active identification of nonlinear mechanical 
(d'ynamic) systems it is generally not possible to use even a bounded white 
noise as a test (input) signal. Similarly, the application of well-known pseudo­
random signals is also problematic and insufficient. Therefore for the active 
identification of such nonlinear mechanical (dynamic) systems the Iow order 
Gaussian random processes seem to he an appropriate and effective test signal. 

Thus, in this paper we consider the nonparametrie identification of the 
continuous analytic Zadeh models in the time domain where the input is a first 
order autoregressive Gaussian random process (coloured noise) avoiding the 
difficulties of the more prohlematic and complicated frequency domain methods. 

3 
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2. The Zadeh nonlinear model (and dynamic system) representation 

It is well-kno'wn that the nonlinear system represented by Zadeh function­
al series is defined by equation 

y(t) = J uo(s)ds + ~J ... J Ui[X(t-S l ),·· .,x(t-si), SI"" sJ Jds l • . • ds i+ ~(t). 
o 0 0 

(2.1) 

Here the Zadeh kernels Ui(x l , ••• , Xi,SI •.. Si) will be considered as 
analytic, i.e 

Ui(X1, ••• Xi? SI' ... Si) = ::2 al;(sl' S2 ... Si) xk 
k~l 

i i 
where x" = 1I 0 and moreover .:E (17 k l ) S a~(sl' ... , SI) ds < = 

1=1 k~1 1=1 Rn 

as well as the additive noise ~(t) is independent of input x(t) and E~(t) = 0. 
The kernels a,,(sl' ••• Si) are called Raibman kernels of the Zadeh non­

linear model representation [8]. For the identification of the above kernels we 
assume that the following equations hold 

(i) 

where 

i 

k = (k1' ... ,ki), 1 = .:E kj' 11 = (11 ... 1) and 17 (sr - Sp) 0, 
~1 ~p 

(ii) 

Here P is an arbitrary permutation of the elements 1, 2, ... , n. The last 
condition can be satisfied by the summation ..:E ap/,(Ps). 

p 

Because the weights a" are coefficients of Xk thus the above conditions 
do not cause any loss of generality. In the next sections the input will be 
described by the Gaussian first order autoregressive (coloured) process and 
xl; will be replaced by Appel polynomials. 

3. :M:ultivariahle Appel polynomial system 

To approximate the analytic Zadeh nonlinear system in the case of a Ga­
ussian autoregressive input let us introduce the n-variable Appel polynomi­
al system [8]. 
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1. Ao = I 
2. A(xl, X2, •.. ,xn} is an n-variable symmetric polynomial of degree n in the 

variables Xl' •.• , Xn; 
o 

3. -<:l-An(xl, X2, ••• ,xn) = A-n-I(XI , X2" ... ,xn- l); 
uXn 

4. E A(xl, x2" ••. ,x) = 0 where X = (Xl' X2' •.. ,xn) is 

a Gaussian vector-valued random variable 'v-ith covariances Cx 'x - and Ex = O . 
• 1 

If we denote the covariance of the variables xi and Xj by CXlX; for the 
Appel polynomials An(x) the follo,dng recursive formula holds (i.e. An can be 
calculated by the formula): 

n-l 

An(xl, ... ,xn) = xnA n - I (X1, ••• ,XI1-I) - ;:;E CXi,xr._411-2.(XI'·· "xi-IXi+I" .. ,xl1 - I)· 
i=l 

For the second order moments of the Appel polynomial system (in the 
case of the joint Gaussian distribution of the variables Xl' ••• x n' Zl ••• Zm we 
get 

n n 
EAn(X I ,X 2, •• • ,xn ) Am(zl' ... ,zm) = on,m;:;E* 11 CX1Zi/' 

n! l=1 

where the summation };* is extended for all possible permutations i 1, i2 , ••• , in 
of numbers I, 2, ... , n. [7, 8]. 

Note that the system of the multivariable Appel polynomials ensures 
certain orthogonal properties to identify the analytic Zadeh model (Rajhman 
kernels) analogously to Wiener's G functionals for the identification ofYolterra 
models (Wiener kernels) in the case of the stationary Gaussian input processes. 

Thus the Appel polynomials have sufficiently general forms for containing 
the orthogonal structures as special cases to identify Wiener kernels of non­
linear systems represented hy Volterra functional sel'ies. For example using 
the cross correlation function RYAn the Appel pol:ynomials An are able 
to identify so called L functionals (hoth have an analogous structure [2]) 
given by Lee and Schetzen to identify Wiener kernels. If the input is a white 
Gaussian process it can prov-ide the identification of Wiener kernels automa­
tically through cross correlation RYAn [2]. (Naturally if the input is a white 
noise process then An is the product of x(t - Si), i = I, 2, ... l. 

If the input is a Gaussian white noise process, the Volterra model repre­
sented hy G functionals can be described by the Appel polynomials too, i.e. 

--i 
= if·· . Jgj(SI' ... Sj)x(t - SI) .•• x(t - Sj)ds1 • •• ds j. 

)=0 --j 
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Our propositions for the Appel polynomials hold also in the case when 
the variables are not different. Thus, we get the uni- and bivariable example, 
the bivariable Appel polynomial Akn(x, y) is a (k + 1) - variable Appel poly­
nomial, i.e. 

Ak I(x,y) = AHI(x, x, ... ,x, y, ... ,y) 
, -----

k I 

As a generalization of this 'we introduce the follo'wing symbol 
s 

A 1k 2, ••• kS(x1, ••• ,xs) = A .::2 kj (Xl' ••• 'Xl' ••• Xs"" ,Xs) 
i=1 

For the second order moments of Appel polynomials we get [8] 

EA1c,,!c,, .. .f)x1, ••• X s)AI1, •.. Ip(Y1' .•• ,Yp) = 

where 

1,-i- ... -i-I~ P (k \ P s-1 

6.1:1-i- ... -i-;', ll.li!/p:; ) (:1' m2' ... , mpJll cr:,~'T1 

o 

2: Jt=lq J 
t=l 
i=l,~ ... . ,s-l 

rk, 1 s-:-l P - . 

l·; 'i 1) fl C~f)}: 
h .... ,Jp, 1-1 1-1 

s-l 
-l ""-"i mt-- t- ~1t 

i=l 

(3.2) 

(3.3) 

(3.4) 

Using the multivariable Appel polynomials it can be seen that the 
equation of the analytical Zadeh nOlllinear system (2.1) has the following 
equivalent form, i.e. 

=Sllo(s)dS + .i .::2J~ .. . J'ak(Sl'''' ,si)A,c[x(t-sl),· .. x(t-s i }] dsl · .. clSi+~(t). 
1=1 k:2:1 

o 0 0 ----i 

(3.5) 

4. Definition and application of the continuous AR(l) (coloured noise) 
process 

Let us consider the Gaussian first order autoTegressive stationaTY random 
pTO cess for the identification of the nDnlineaT d-ynamic models TepTesented 
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by the analytic Zadeh functional series. The first order autoregressive stoc­
hastic differential equation 

dx(t) = - o:x(t)dt cdw(t), (4.1) 

where wet) is a Wiener process given by the following spectral representation 

f
=e-w -1 

wet) = . Sed},). 
~}. 

(4.2) 

Here S( d).) is a Gaussian stochastic spectral measure. The auto correlation 
function of x(t) is 

Ex(t}x(s) = RxAt 
c . s) = - e-''It-si. 

20: 
(4.3) 

The autoregressive process x(t) here ·will be denoted by xr(t) where 
r = rea, c) 
Note: 

It can be proved [8] that the process xr(t) converges (in weak topology) 
to the white noise process if a, c -+ = and a2/c -+- 1/2. 

This limit transition will be denoted by r -+- =. 
The computation of Rajbman kernels can he performed hy cross correla­

tion functions hetween the (centralized) output and the Appel polynomials 
("on the white noise") i.e. 

a/r(sl" •• ,Sj) = ~lim E(y(t)At[(zr(t - SI)' ... ,zr(t-sj »] = 
j.r-= 

where 

and it can he proved that the process Ll,An(Zr) also converges to a non-Gaussian 
"white noise like" process [8]. 

For the multilinear case from (4.4) we get the well-known estimation of 
Wiener kernels determined hy multivariahle cross correlation functions as 
a 8pecial case [2, 8). 
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5. Nonparametric identification of continuous Zadeh models using 
first and second order autoregressive processes 

For the nonparametric identification of the above Zadeh models let us 
consider the model equations (2.1) or (3.5) in the form 

where the Rajbman kernels have to satisfy fmther natmal conditions (not 
losing their generality) in order to obtain a simpler approach of the nonpara­
metric identification procedure. 

Here let x(t) be a Gaussian AR(1) input process 'with zero mean and unit 
variance (for the sake of simplicity) and let ~(t) be an additive noise inde­
pendent from the input and Eg(t) = O. 

n 

Furthermore Ak is an Appel polynomial with order n and degree :E ki' 
i=l 

Let us denote an arbitrary member of the Zadeh model in the following 
form: 

Let Ji be a permutation of the numbers 1, 2, ... , n and as weil as 

It can be seen that the Appel polynomials satisfy the following equation 

Ak[Ji(xt-s
" 

... ,Xi-so)] = A""[(xt-s,, ... ,Xt-sJ]· 

Thus we may assume ("without any restriction) that kl < k2 :::;;: kn• For 
the case n = 2 if kl " k2 

00 

SS g""k,(Sl,S2)Ak"i:,(Xt-s" xt- s,) ds = 
o 

00 

= rr g'i"k,(S2,SI) Aii,,li,(Xt- S,' Xt-sJ ds = 

i.e. we can achieve that there be only g",,!c, kernels in the system. Because 

00 

.~S gk,,1,,(SI,S2)A,,,,l,,(xt-s,, XI-S,) ds = 
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=SS s,ss, 

-without any restriction it may be assumed that 

gk,,/{,(Sl'SZ) = 0 

g,. ,. (Sl'SO) = 0 vrt.:/t"l -

39 

(5.3) 
In the case of k1 = kz, the Appel polynomials are symmetric so the above 

condition holds automatieally. This approach can be extended for any n and so 
we assume the following conditions for the kernels of the model: together with 
kernel g" there is kernel g",(k) in the model: 

(5.3) 
Since the Appel polynomials of different degrees are orthogonal it is 

enough to consider only the covariances of Appel polynomials having the same 
finite degree (members \"ith different orders are possible). 

In this case the highest order Appel polynomial of Nth degree is All ... I 
i.e. kl = k'J. ... = hn = 1 (n = N) and this is the Nth order polynomial as well. 
So there is no other \vith an Nth degree and order lV. 

For the identification of kernel gl .•. 1 it is necessary to determine the 
weighting function with the highest degree, and the appropriate member 
(which contains this kernel) will be excluded from the system, and so on. 

lf g 11 •• 1 ( T) ~ , 0 then it is the member of highest degree, otherwise we 
have to indicate the rules of the choice of the member of highest dcgree. 

The identification of gn ... 1 can be obtained from the cross correlation 
of the output and the Appel polynomials (defined on the prewhitened input 
process) i.e. 

N-I co 

= 1: 1: SS gr:(s) EAk(Xt-sl' ... , Xt-sn)AL .. I(et-T,' ... , ei-1:N) ds 
n=l n 0 

:i: ki=N 
i=! 

(5.4) 

Here we do not deal \vith the principal problem of the (i) prewhitening 
and (ii) the definition of the Appel polynomials on the white noise process, 
because (i) is a well-known problem and (ii) was discussed in detail in [7. 8.] 
by the authors of this paper. 
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We notice only that it is enough to prove the following limit relationships, 
since 

E{y(t)A)([e(t u)]} = RYAk(U) = Hm E{y(t)AJ;[xr(t - u)]} 
r-eo 

= = S g)«s) Hm E{A)(U hr(v)e(t - S - v)dv]A)([xr,(t - ll)]} ds, 
o r-.oc 0 

where hr is the weighting function of the filter for ARMA's process xr,(t), i.e. 

cc 

xr,(t - s} = S hr,(v)e(t - s - v)dv 
o 

we get that 

liill E{A,Jxr(t - s)]Ak[xr,(t - ll)]} = lim R~rxr,(ll - s) 
r->oo r->= 

"" = Hill {6u~s S hr,(ll s v)hlv)dv = hr.(ll - s)6u~s 
r->= 0 

from where we obtain the "expected" result, i.e. 

s)ds. 

In the discrete case, naturally, we have no theoretical problems of the 
above type. 

Thus it is sufficient to use the covariance 

and the covariance theorem for Appel polynomials with a slight modification 
according to the formula (3.4). 

where C(xp, Zq) is the covariance between the random variables xp and Zq' 
Taking into consideration that gk(s) ,/ ,0 if SI < S2 < ... ::;: sn we get 

that 
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The summation in the last additive member of the above formula is valid 
for the entire 7i permutation of numbers 1 ... N: 7i(1, .. . ,N) = (ql' ... qN) 
and since the property (ii) of the kernels g the upper hound of the i-th integral 
".vill be ruin i Pi' Then, since i 1 > . . . in there is no repetition in the upper 
bounds ii only for the case when 7i(1, . .. , N) = (1, . .. , N). 

In the first additive member of the formula (5.6) W 1, •• "wn denotes the 
appropriate hounds of the integrals. Let us no"w analyse the influence of the 
operator 

N ( a) L = If cc+--. 
1 chi 

(5.7) 

on cross correlation RYA1 ..• 1(i). First, considering the operator (cc + O/OiN)' 

could be only in the last place, among the upper bounds of the integrals because 
the property (ii):of kernels g (otherlvise the larger one would follow it) the upper 
bounds of integrals follow a monoton series. 

If wn = iN and ips." iN then 

lVl tvn 

(cc+ &:J r .. S gk(s)e-o< fifjp(Tq~<P) ds = 

o 0 

W1 Wn 

= cc J ... f g,,( s )e-" f f jg(7:q-Sp ) ds -

o 0 

W1 lV'n 

Cl: ~ j~S ... f g,,(s)e-" f fi$(7:q- Sp) ds = O. 
p=l 

(5.8) 

~o 0 

If iN is the upper hound of the integral in any additive memher then 



42 P. VARLAKI-G. TERDIK 

(5.9) 

This is valid if j;; = 1 and /: = 0, k > 1, ... n - 1 and therefore kn = l. 
n 

But if n < N there is at least one k i > 1 because of ;Eki = N. 
I 

Thus it is clear that during the further influence of the operator, only one 
member remains in the sum when k i = 1, i = 1, ... , N or Pi = i. 

Now the member containing the kernel gl •.• 1 i.e. 

= 
Yl ... l(t) S· .. S = gl..·I(S) AI. .1(Xt-Sl' ... , xt_sp)ds 

o 0 
(5.10) 

is excluded from y(t). 
Thus, the model obtained contains no higher order members than (lV -1 )th 

order ones. The further determination of the kernels can be carried out by 
induction. Thercfore let us assume that the model does not contain members 
of order n 1 and degree N. Let us determine and neglect the kernels with 
order n and degree lV, and so on. The computation of the kernels of order n 
can be realised also by induction. The choice can be "carried out" by the follow­
ing algorithm: Let K be the set of kernels of order n and degree N "belonging" 
to the system, moreover: 

one 

Kl = {kEKikl = max lJ 
ZEK 

KI,n = {kEKllkn = max ill} 
lE!(l 

K2 ={kEK1,nlk2 = max 12} 
ZEKl.n 

K 2,n-1 = {kEKzlkl1-1 = min lll-l} 
IEK, 

(5.11) 

max l[ll]} 
ZEK[ni2]-I.n_[n!2] 2' 

If n is even then the last set K[I}"-[I)+l and if n is odd then the last 

This set series is decreasing monotonically and has only one common 
element. The cross correlations RyAi: if i 1 < ... < iN is 

n 

RyAk(e)(i1, ... , in) = 2: 2: s.ooS g!(s)EAz(Xt-sl' ... , xl-Sm)A!,(el-r,' ... ,el-n,) ds 
m=l m 0 

:El;=N 
1 



STATISTICAL IDE:STIFICATIOiV OF ,YO;VLI;VEAR ZADEH ,UODELS 43 

and so 

(5.12) 

where the upper hounds of the inregral are from the appropriate T i , i = 1,2, ... 
Let us analyse the case when 

Taking into consideration the property (ii) of the kernels g and the cross 
correlation hetween the original input and the prewhitened input the follo\ving 
equalities hold 

W m = Tn if j~ ~ ~ 0 and j~-l = j~-2 = ... = j?n = 0 

which means, that 

J'n - I . I < "'J'q - k m - rn' 'm _ ~ m - n 
q 

i.e. 

W1 = T n- m+! if n-m+1 . ~ 0, jq-m = 0 ... = R = 0 

but then j~ = 0, q = 1, 2, ... m 

and so ~j~ = kl = 0 that is a contradiction when m < n. If m = n, W m = T n if 
p 

j~ . ~ 0 and j~-l = ... = j;, = 0 and so since j~ = In' In < kn but from mini­
mum property of kn it holds that kn = In 

Wn - 1 = Tn-l if j~=i .. ~ 0, j~=i = ... = jh-1 = 0 

j~-1 + j~=i = In-l 

W1 = T1 if R = O. 

Thus ji = kl < ~ j'{ = 11 
q 

and because of the maximality of k1 we get that k1 = l1 and kn = in iR possible 
d nl · if .q - rx - 9 . 'Il - 0 - 1 9 1 an 0 Y J1 - P, q - w, .. , moreover Jp - ,p - ,~, ... , n - . 

Thus j~=i = In-1 and j~ = k2 
from where In-1 < k n - 1 and 12 > k2 but for the minimum property of k n - 1 as 
well as for the maximum property of kz, kn- 1 = In-1 and l2 = k'J. and so on. 
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As a consequence we obtain that W1 = 7:1, ••• Wn = TIl is possible if 
and only if k = l. 

But in this case 

i.e. the formula for the determination of the Rajbman kernels of the analy-tic 
Zadeh model can be obtained in the following way 

nIl ,& ) Il-.-, lrxki --r- - RyAk(c)(T) = g/(T). 
;=1 hi' (h, 

Thus, using the above expression, if the input is an AR(l) test process, 
the Rajbman weighting functions can be computed by a relatively simple 
method. Naturally we may obtain entirely similar results for discrete (or 
discretised) input/output processes as \,'ell. 

Finally let us consider the case when the input is a Gaussian second ordcr 
autoregressive stationary process with zero mean, i.e. 

x(t) = rxx(t) px(t) + e(t) 

or in the frequency domain the transfer function of filleris 

1 
H(s)=----

- ,B- 7.S S2 

where s is the variable of Laplace's transformation and ;'1' )'2 are the roots of 
the equation rxs + S2 = 0 and so the transfer function of the filter is 

1 
H(s) = -. ----

VI S)(?'2 + s) 
1 (1 l' -------

'" ... '" .... 1 
1'1 - )'2 1'1 S 1'2 -, s) 

from where the weighting function of the filter IS 

) 
1 . 

h(r =. , (e-1.1~ 
)'2 - "'1 

It can be proved easily that the transfer function of hn(s) 

n! 
n 

II (n - k)).l -i- k}'2 S 

k 

Let 
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Using the operator P z we can prove the following formula for the deter­
mination of the Rajbman kernels if the input is an AR(2) process (according to 
the above algorithm-in the case of the AR(l) input); 

n 
P 2{ RyAk( r)} = n! gk(l.) 11 k]! . 

j=! 

Remark: Naturally the above method can be used also for the identification of 
V olterra kernels according to the results obtained by Schetzen in the frequency 
domain [2]. Thus 

Ryee ... e(lll' ••. , lli) = S· .. S a( SI' •• . ,sJh( ltl - SI)' .. . ,h( lti - si)dsl .•. dS i 
o 0 
'==v-=>' 

i 

where the V olterra (Wiener) kernels a (rI' ... , ri) can be computed by formula: 
when the input is an AR(l) process 

1 i' & I -, II (x -, -) R ye· .. eC r l ... , rJ = a(rl ... , rJ 
n. j=l f)rj 

If the input is an AR(2) one 

1 i ( & ) . & 1 
a(n1, ... ,n2) = ,IT (;'1 + -- l;'2 + -- Rye .. .eCltl' •. • ,IlJ. 

n. j=l f)u,] &l~j ( 

6. Important special cases 

Let us now consider the application of the above results ... for a second ... 
order Zadeh model (with second degrees). 

The determination of the second order kernel a22(' •. ) can be ohtained 
by the formula 

where 
RyA:,(r,a) = E{y(t)A. 2 [e(t - r)JA. 2Ie(t - a)]}. 

It can be noticed that if there were a second order kernel an ( ... ) as well 
then,-according to the algorithm introduced we first have to chose the kernel 

(6.2) 

and 

In this case the computation of the kernel a 22 ( ••• ) can be carried out by 
the expression 

2adr,a) 
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Furthermore 

2an ("a) = (0;+ ()~) (0; 

(6.3) 

For the one dimensional kernels of second order Zadeh models (n = 2) 
we get 

and 

a:lr) = l20;+ :, j [RYA:(T) - V2 S S al1(T,a)e-2~(r-i-G)dTda] (6.4) 

o 0 
r>a 

when assuming that a 3(.) = a4(.) = . . . 0 
Analogously, if the input is a Gaussian AR(2) stationary process then 

for example for the kernel a22 (. , .) we obtain the following similar result 

, , 0 (9 ' I 8 ') \(2' I () 'J 
/'2' OV _1. 2,8v \ /'1';;;; . (6.5) 

because 
u v 

[( e-Zi,,(U-S) _ 2e-(i",,-J,,)(u-s) + e-2J,,(u-S) 

V I' 

. [e-J·,(u-z) _ e-i.,(u-Z»)] [(e-i. ,(I·-Z) _ e-J·,(v-z»)] . [e-J·,(I'-Z) - eJ·'(I~z)]dsdz. 

For practical applications let us compute the Rajbman kernels of the 
second order Zadeh model from discretised samples of the ergodic stationary 
Gaussian IiO processes. 

In this case the equation of the discrete second order Zadeh model is 

= 
Yt = .,;z a1(i)A1(Xt_;) 

i=O 
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+ ~ a'J.'J.(i,j)A'J.'J.(i,j) ~. 
It] Ml 

(6.6) 

i>j 

If the weighting coefficients of the filter of the input process are c p 

(p = 1, 2 .... ) then the polynomial cross correlation function between the 
input filter (source) white noise and the output process of the second order 
Zadeh model has the form: 

(6.7) 

p,q q 
RyA:,(P,q) = 2 an(i,j) Cp_iCq_j + 2 an(i,j)cp-j Cg_;, p > q 

i>j i>j 

and neglecting the kernel a l1(i, j), i < j 

(6.8) 

and 

If the input is an AR(l) process i.e. XI 12Xt-l = et (where el N(O,l») and 
1 121 < 1, furthermore P1(Z-1) = 1 + QZ-l we get the following relationships 
(P1jz-ljc j = Dj = 0, cj = (- 12/) if z is 

P 2(Z-1) = 1 - rlZ-1 

P 2(Z-1)RyA:(p) = U2(P) 

R ,( ) - R '() 2 ~ ~ ( .. ) 2P-(f+j) yA,P - yA,P -r=~~Unl,JQ 
V 2 i > j 

P l(Zll)P 2(ZZl)RyA:,(p,q) = an(p,q) 

Pl(Zll)PZ(ZZl)RYA:,(P,q) = udp,q) p > q 

P2(Zll)Pl(Z21)R;A:,(P,q) = U2.1(P,q) p > q 

P2.(Zll)P2(ZZl)RyA:,(P,q) = U2.2.(p,q) p q. 

(6.9) 

In spite of the continuous case the pO'wers of the discrete AR(2) (input) 
processes are not autoregressive processes and so the identification of the 
Rajbman kernels of Zadeh model (6.6) in the time domain can be carried out by 
more complicated methods, hut that 'will be the suhject of a forthcoming paper. 
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Conclusions 

The paper introduced a method for the determination of analyticcal 
Zadeh models. The result obtained can be used for the nonparametric identi­
fication of the nonlinear systems represented by the analytic Zadeh functional 
series and the structural estimation of nonlinear dynamic systems described by 
a certain class of nonlinear statistic differential equations. 

References 

1. Wm"\ER, N. Nonlinear Problems in Random Theory, 1958. ?tIlT rep., Cambridge and Wiley 
New York. 

2. LEE, Y. and SCHETZE;,\, M.: :::VIeasurement of the Wieuer kernels of a nonlinear system by 
cross-correlation, Int. Journ. of Control, 2 237-254, (1965). 

3. ARA.TO, :::VI.: Linear stochastic systems with constant coefficients, Lecture Notes in Control 
and Inf. Sci. 45 (1982) Springer-Verlag. 

4. IBRAGIMov, L A.-RozANow, Yu. A.: Gaussian Random Processes, (1974) Springer-Verlag. 
5. CASTI, L. J.: Recent developments and future perspectives in nonlinear system theory. 

SIAM Review, Vol 24. No. 2. July 1982. 
6. SCHETZEN, :If.: A theory of nonlinear system identification, Int. L of Control, Vol. 20. No. 'L 

577-592, (1984). 
7. VARLAKI, P.-TERDIK, G.: Identification of nonlinear Zadeh models using white noise 

input, News Letter, Technical University of Budapest, 1984·. No. 4. 
8. V.4.RLAKI, P.-TERDIK, G.: Identification of Rajbman Kernels in Zadeh functional series 

representation of nonlinear systems, Problems of Control and Information Theory, 
1985. No. 3. 

9. ?',!ICHELBERGER, P.-KERESZTES, A.-BoKOR, J.: Nonlinearity analysis for identification 
of commercial road vehicle structure dynamics, Int. Journal of Vehicle System. 
Dynamics, 3. 172-175, (1985). 

10. :lfiCHELBERGER, P.-BOKOR, J.-KEREszTEs, A.: On nonlinearity analysis for stochastic 
modelling of vehicle dynamics lEE. Control 85. 2. 545-550, (1985). 

11. ZOBORY L Dynamic processes i.n the drive systems of railway traction vehicles. Vehicle 
System Dynamics. Vol. 15., 1986. 

Dr. Peter Y..i.RLAKI } H 1-21 B d .. -;:,' u apest 
Dr. Gyorgy TERDIK 


