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Summary

The paper presents a nonparametric identification methed for the determination of the
kernels of nonlinear analytic Zadeh models if the input signal is a Gaussian stationary auto-
regressive process.

Introduction

In recent times the nonlinear system-identification has gone through an
important phase of development. The adaptation of modern mathematical
tools [5] has led to the satisfactory principal solution of certain nonlinear
differential equations using Volterra and analytical Zadeh functional series
[7,8]. The analytical Zadeh functional series, the Zadeh models make it possible
ity to solve important types of nonlinear differential equation where the right
side of the equations has a nonlinear character with unknown parameters
typical cases of which are the nonlinear vibrating phenomena (e.g. in the
modelling of vehicle system dynamics.) [9, 10].

In spite of the real importance of these nonlinear dynamic models,
unfortunately, until now there are very few statistical results on their identi-
fication.

Therefore, the authors of this paper recently introduced the nonlinear
analytic Zadeh model for the input/output representation of differential
equation. [9, 10]. We dealt with the identification of these continuous Zadeh
models where the input was a Gaussian white noise process.

Unfortunately for the active identification of nonlinear mechanical
(dynamie) systems it is generally not possible to use even a bounded white
noise as a test (input) signal. Similarly, the application of well-krown pseudo-
random signals is also problematic and insufficient. Therefore for the active
identification of such nconlinear mechanical (dynamic) systems the low order
Gaussian random processes seem to be an appropriate and effective test signal.

Thus, in this paper we consider the nonparametric identification of the
continuous analytic Zadeh models in the time demain where the input is a first
order autoregressive Gaussian random process (ccloured noise) avoiding the
difficulties of the more problematic and complicated frequency domain methods.
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2. The Zadeh nonlinear model (and dynamic system) representation

It is well-known that the nonlinear system representedby Zadeh function-
al series is defined by equation

oo

(1) = f wy(s)ds -+ Z?J . f W[5, o 2t 81 2 er 8] T, . . 5 £(0).
=1
1} 1]

¢}

(2.1)
Here the Zadeh kernels uy(x;, ..., x.s;...s) will be considered as
analytic, i.e
u®y, o By Sy S) = 3 a(sy, S .. 8) 2F
k=1

K ¢ t i
where *" = JJ % and moreover 3 (Jf k) [ ai(sp. . ..s) ds < =
=1 s R=
as well as the additive neise £(t) is independent of input x(t) and E&(t) = 0.
The kernels a,(s, . ..s;) are called Raibman kernels of the Zadeh non-
linear model representation [8]. For the identification of the above kernels we

assume that the following equations hold

A(S1:505 « 0 on 8;) == 1Sy« v« 1873 Say v wn S5 Sy §)) (i)
ez, g et [ ——
kl Kz ki
where

k= (k.o k), 1= k1= (11... 1) and JT (s — )= 0,
Jj=1 i

ay(sys - - 8i) = ap(Ps). (ii)

Here P is an arbitrary permutation of the elements 1, 2, .. ., n. The last
condition can be satisfied by the summation ‘Z; a,,(Ps).

Because the weights a, are coefficients of x* thus the above conditions
do not cause any loss of generality. In the mext sections the input will be
described by the Gaussian first order autoregressive (coloured) process and
x* will be replaced by Appel polynomials.

3. Multivariable Appel polynomial system

To approximate the analytic Zadeh nonlinear system in the case of a Ga-
ussian autoregressive input let us introduce the n-variable Appel polynomi-
al system [8].
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1. 4, =1
2. A(xy, %9, ....%,) is an n-variable symmetric polynomial of degree n in the
variables x,, ..., x,;

3.

4. FE A(xy, %9y ...,x) = 0 where x = (xl, Ko s s s%y,) 18

a Gaussian vector-valued random variable with covariances C,,, and Ex = 0.
If we denote the covariance of the variables x; and x; by C, . for the
Appel polynomials 4 (x) the following recursive formula holds (i.e. 4, can be
calculated by the formula):
n—1
Ay, o ooxy) = x4, {0, Xpeq) — Z CoponAn_oBpoe s 0XiaXisgse e a0 )

For the second order moments of the Appel polynomial system (in the

case of the joint Gaussian distribution of the variables %, ... %, %, ...3, we
get
n.
EA (2080 .« 0%y) A5, - 00 u5y) = 5,,’,,, Zi [[ Crzys
nti =1
where the summation X* is extended for all possible permutations 7, 2y, . . ., I,
of numbers 1, 2,..., n. [7, 8].

Note that the system of the multivariable Appel polynomials ensures
certain orthogonal properties to identify the analytic Zadeh model (Rajbman
kernels) analogously to Wiener's G functionals for the identification of Volterra
models (Wiener kernels) in the case of the stationary Gaussian input processes.

Thus the Appel polynomials have sufficiently general forms for containing
the erthogonal structures as special cases to identify Wiener kernels of non-
linear systems represented by Volterra functional series. For example using
the cross correlation function R,, the Appel polynomials A4, are able
to identify so called L functionals (both have an analogous structure [2])
given by Lee and Schetzen to identify Wiener kernels. If the input is a white
Gaussian process it can provide the identification of Wiener kernels automa-
tically through cross correlation R,, [2]. (Naturally if the input is a white
noise process then A, is the product of x(t — s;), =1, 2,...1L

If the input is a Gaussian white noise process, the Volterra model repre-
sented by G functionals can be described by the Appel polynomials too, i.e.

30 = 36z =0)] = g faxsl....=s,->.4,-[<x<t~—s1>,...x<t—s,<>]=

- _2 fa; (835« + -8t — 83} ... x(t — s))ds; .. . ds;.

—T——I
J
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Our propositions for the Appel polynomials hold also in the case when
the variables are not different. Thus, we get the uni- and bivariable example,
the bivariable Appel polynomial 4,,,(», y) is a (k -+ 1) — variable Appel poly-
nomial, i.e.

Ay f(xy) = Apgi(® %0 o202, ¥y oo o) (3.2)
2 i

As a generalization of this we introduce the following symbol

S
Aoy oo k(5o x) = A k(%
i=1

ca s By e e Xgeaea®s)  (3.3)

S %,
For the second order moments of Appel polynomials we get [8]

Edp o 0% o2 Aps e oo (010 - o2 yp) =
L es o1y p Z ; < ks . \ p -1
= § Bl : CT‘
ﬁ l = ! ((772'17 Moy o v sy mp’g e i=1

ok i=1 D R
A
2 Ji=Fks

ikl J'}J *ﬁ Iy ¢k, (3.4)

Ji,..Jphi=1 i

s k kl
where OZmi=1— 3ji and ( ) =— .

= TR JT i

i=1
Using the multivariable Appel polyromials it can be seen that the
equation of the analytical Zadeh nonlinear system (2.1) has the following
equivalent form, i.e.

y(t):Jﬁ wy(s)ds + SEJ .- .J‘a.}if(sl, oSy [ 3R — s)dsy, o ds; - 5 =
; =1z ; =1
— J u(s)ds + 3 ¥ J : J Q515 - e e 28)AR[A(E—51), + v 5(t—3)] d; ... ds=-E(2).
l=1 k=1
0 0 0

k= (k... k) (.

8]
w
S

4. Definition and application of the comtinuous AR(1) (coloured noise)
process

Let us consider the Gaussian first erder autoregressive stationary random
rocess for the identification of the nonlinear dynamic models represented
o P
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by the analytic Zadeh functional series. The first order autoregressive stoe-
hastic differential equation

dx(t) = — ax(t)dt + cdw(t), (4.1)
where w(t) is a Wiener process given by the following spectral representation

T o—ii
w@=figigmy (4.2)

—0

Here 5(d2) is a Gaussian stochastic spectral measure. The autocorrelation
function of x(t) is

Ex(t)x(s) = Ryt — 5) = — e, (*.3)

The autoregressive process x(t) here will be denoted by x.(t) where
r = r(x, ¢)
Note:

It can be proved [8] that the process x,(t) converges (in weak topology)
to the white noise process if «, ¢ ~— oo and o%c — 1/2.

This limit transition will be denoted by r — o=.

The computation of Rajbman kernels can be performed by cross correla-
tion funections between the (centralized) output and the Appel polynomials
(*on the white noise™) i.e.

1., \
(81 + « « o8) = —Hhm E(y() A% (2t = s1)s « - o5 (f—5;))] =
g I =
1., . 1 1 .
= }:—hm AZRya,(s) = —?E[}(t)A;[x(t — 81), +» 052t — $5)]] = —.;Ry.%k(x)(S). (4.4)
aT—oo J- J:
where
‘ ( (2ot Bhi—i | 12
Affa(t — ), o o2t — )] =] Ailx(t—7.)s. . x(—7)]=4.AL()

17 (=)

and it can be proved that the process 4 A4 (Z) also converges to a non-Gaussian
“white noise like” process [8].

For the multilinear case from (4.4) we get the well-known estimation of
Wiener kernels determined by multivariable cross correlation functions as
a special case [2, 8].
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5. Nonparametric identification of continuous Zadeh meodels using
first and second order autoregressive processes

For the nonparametric identification of the above Zadeh models let us
consider the model equations (_2.1) or (3.5) in the form

0=3 f JD,L(S WFpon o+ ti) ds = @), (5.1)
Fpoon kn=1

where the Rajbman kernels have to satisfy further natural conditions (not
losing their generality) in order to obtain a simpler approach of the nonpara-
metric identification procedure.

Here let %(t) be a Gaussian AR(1) input process with zero mean and unit
variance (for the sake of simplicity) and let £(t) be an additive noise inde-
pendent from the input and Eé(t) = 0.

n
Furthermore A, is an Appel polynomial with order n and degree > F;.

i=1

Let us denote an arbitrary member of the Zadeh model in the following

form:
7l6) zof Of 2u(8) Al -+ - 2y ds. (5.2)
Let m be a permutation of the numbers 1, 2, . . ., n and as well as
(k) = (Baays « - - Fagn)
T(Xy_gys o v o Xi—g) = (Fpogay = + + +Ximsapm) -
It can be seen that the Appel polynomials satisfy the following equation
Aty )] = Aul(ss - - s Xp—s,) -

Thus we may assume (without any restriction) that &k, < ks < k,. For
the case n = 2 if k, = k,

5‘5 8 ke (31 s’) 41\1 i (xL_Sx. Xi_s, ) ds =

oo
= OH é’k,,/. $2:57) 4\«1\1(“5;—53: xt—s;) ds =

8

— S‘j‘ O/\ (s"' sl) /_1/ /\'1("’1‘—3‘“1‘—‘31) dS.

ot

i.e. we can achieve that there be only g, , kernels in the system. Because

oo

f gl\‘1,k:(slfs2)A/(;,I(:(xf—sn x.f—sz) ds =

o,
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= “ -+ ” gk;,;’::(sla S:Z)Alfx,kg(xt-3,=xt—-sg) ds =

A 51228,

:Si gl\’,,l\'g(svs'2)-4k1,k2(xf—$1; xt—s) ds +
12282

_:_S ij‘ gkg,k,(sp 5'2) Akg,l:,(xt—&& xt—s:) ds
12252

without any restriction it may be assumed that
gk;,kz(slt‘sZ) =0 if s; > s, and
8o (51:89) = 0 if s, > s, (5.3)

In the case of k; = k,. the Appel polynomials are symmetric so the above
condition holds automatically. This approach can be extended for any n and so
we assume the following conditions for the kernels of the model; together with
kernel g, there is kernel g_,, in the model:

() =0 1if we{tlt; <. < o K7 )e (5.3)

Since the Appel polynomials of different degrees are orthogomal it is
enough to consider only the covariances of Appel polynomials having the same
finite degree (members with different orders are possible).

In this case the highest order Appel polynomial of Nth degreeis 4;; ...
ie.k; =k,...=1Fk,=1(n= N)and this is the Nth order polynomial as well.
So there is no other with an Nth degree and order IV,

For the identification of kernel g; ..., it is necessary to determine the
weighting function with the highest degree, and the appropriate member
(which contains this kernel) will be excluded from the system, and so on.

If g1 .« (7} == 0 then it is the member of highest degree, otherwise we
have to indicate the rules of the choice of the member of highest degree.

The identification of g;; . .. ; can be obtained from the cross correlation
of the output and the Appel polynomials (defined on the prewhitened input
process) i.e.

Ryas @71 on) = Ey(t) A4y sl - - s €12y) =
N

|

1 o
gj‘ g!:(s) E""-{I;(xt——s;: Tt xi—sn) ‘41...1(et—n= crte ei-—i‘.v) ds
N

K==

v
Misbg

n

~"..

+ 3 " S g1 1 aS)EA 1(Frmsyr - - s Frosy)-

c A (8 - -5 1) ds. (5.4)

Here we do not deal with the principal problem of the (i) prewhitening
and (ii) the definition of the Appel polynomials on the white noise process,
because (i) is a well-known problem and (ii) was discussed in detail in [7. 8.]
by the authors of this paper.
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We notice only that it is enough to prove the following limit relationships,
since

E{y(©)Axle(t— w)l} = Rya(u) = lim E{y()dilx (e — w)]} =

8

f hm E{ 4,\[5‘ h(v)e(t — s — v)dv]d, [« (t — u)]} ds,
where h, is the weighting function of the filter for ARMA’s process =, (t), i.e.

%, (F — s) = j?zh,c(v)e(t — s — v)dv
o
we get that

lim E{Ak[xr(z - S)] [xfg t - u)]} = lim erlf‘ (u - s)

r=—>co F—>o00

= lim {§,> j‘ B (v — s 4 o)h(e)dv = R, {u — )0,

r—>o0

from where we obtain the “expected” result, i.e.

u
R, 19(u) _—.05' g ()i (u — s)ds .

In the discrete case, naturally, we have no theoretical problems of the
above type.
Thus it is sufficient to use the covariance

e-a(s——i) s 2 £

cov(x,, ¢) = {

0 st

and the covariance theorem for Appel polynomials with a slight modification
according to the formula (3.4).

[[H (xp zq)

p__l g=1

4 ~g
JPZ

where C(xp, z;) is the covariance between the random variables x, and z,
Taking into consideration that g,(s) == 0 if s; <s, < ... <s, we get
that
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R}’Au...l(g)(flﬂ'[g PR TN) —

N 3 it P f’l K"” —c Y‘J s d
2 2 Z H p gi(s)e s L
n—1 n X . > JP ;

N
! 23
;;;-‘ ﬁi’,=zg
4
JPZO
7’,{] Tow
+ ZJ s fgl...1(3) e® z;'("aip‘—»p) ds.
N1
0 o

The summation in the last additive member of the above formula is valid
for the entire = permutation of numbers 1 ... N: (3, .., N) = (gy,...qy)
and since the property (ii) of the kernels g the upper bound of the i-th integral
will be min 7. Then, since 7, > ... > 7, there is no repetition in the upper
bounds 7, only for the case when :z( e Ny=(1,..., N).

In the first additive member of the formula (5.6) w,, . . ..w, denotes the
appropriate bounds of the integrals. Let us now analyse the influence of the
operator

N 0
L=]JJle+—
1 TS
on cross correlation R4, . .. ,(7). First, considering the operator (x -+ §/d7y),
could be only in the last place, among the upper bounds of the integrals because
the property( i) of kernels g (otherwise the larger one would follow it) the upper
bounds of integrals fo]low a monoton series.

If w, = 7y and 7p.== 7, then

wy Wy

: 8 f .. J" gk(s)e—‘" -?%"jg(fq-—sp) ds Pl

O e

i

8?N

w, Wy
=ocf .. .fgk(s)e‘” 25 ds —
o 0

=1

If 7, is the upper hound of the integral in any additive member then

wy ™5

~ n N
[+ ot A e as =

0

o

”,8

aTN
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Wreey
Nt

— f f (51 -+ o Spys Ti) e, 2 15 IS ds, (5.9)

This is valid if jY = 1 and jY = 6,k >1,...n — 1 and therefore k= 1.
n
But if n -7 N there is at least one k; > 1 because of Zki =1

Thus it is clear that during the further influence of the operator, only one
member remains in the sum when k; =1, i=1,..,Norp, =1
Now the member containing the kernel g, ..., i.e.

Y1.al®) Oj‘x A= grals) Ap (s

| o s pgp)ds (5.10)
is excluded from v(z).

Thus, the model ocbtained contains no higher order members than (N—1)th
order ones. The further determination of the kernels can be carried out by
induection. Therefore let us assume that the model does not contain members
of order n -+ 1 and degree IN. Let us determine and neglect the kernels with
order n and degree IV, and so on. The computation of the kernels of order n
can be realised also by induction. The choice can be “carried out’ by the follow-
ing algorithm: Let K be the set of kernels of order n and degree IV “belonging™
to the system, moreover:

K, = {k¢K|k, = max I}

K
K, , ={keK |k, = max I}
K, ={keK, |k, = max L} (5.11)
53 Klv

Igz,n—l :{keKsznhl == min ln—l}
IEK

K_ _={kcK L = max
2 = R o P ) T e 2]
K ={keK_ Ik —~ min 1 }

[2]-[5]+: [51] 2] e 2]

If n is even then the last set K[ ] [ ] 1 and if n is odd then the last

one
I\ = ]LEI{ }k n e min l n }.
e L LA A § s +1
(512 =R 1 P21 g ]
This set series is decreasing monotonically and has ounly one common
element . The cross correlations Ry, if 7, < ... < 7y is

fg, (S)EA(%i—ss - - -5 Xpsm)Ar(Er—,neer€r—) ds

(%!

n
‘R_\’Ak(e)(rlf g Tn) —2'

S l,‘=f\

~Ms
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and so
n n ' m lq
Rl =3 3 3 WIS )
m=1 m E g I p=1 g=1 (Jq-- ']l]
1Y u=N"g P
;S: Jg=kp
Wy
.- S a()e= Fisers as (5.12)
where the upper bounds of the inregral are from the appropriate 7,7 = 1,2, ...

Let us analyse the case when
| § Z— 4 — W, =
m= Tns Wnoy = T, W) = Tp e

Taking into consideration the property (ii) of the kernels g and the cross
correlation between the original input and the prewhitened input the following

equalities hold

1

Wm—fnlf]m‘r"()and]rnl—]n-a ":]m:O

which means, that

Wy = 7y  jA3 <0, ji3=...=j_,=10
i.e.

Jm—r T in =In

W=, o, £ ji7™1 =0, ji7"=0...=71=0
but then]q——() g=1.2,...m

and so _sz = k; = 0 that is a contradiction when m < n.Mm = n, W _ =< if
D

jn== 0 and ji~1= ... =j; = 0 and so since jj = [, I, <k, but from mini-
mum property of k, it holds that &, = [,

Wi =7, i j50i==0, jili=...=ji_,=0

]n 1 Jact = laog

lerl if j1 = 0.
Thus ji=Fk < 3 ji=1,
q

and because of the maximality of k; we get that k; =1, andk, =1, is possible
and only if j{ =6, ¢ =2, ... moreover j,=0,p=1,2,..., n— 1.

Thus j7=; =1 _, and ji =k,
from where I, _, <k, _, and l, > k, but for the minimum property of k,_, as
well as for the maximum property of ko, k,_; =1, and I, = k, and so on.
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it
i

As a consequence we obtain that W, = 74, ... W, = 7, is pessible if
and only if k=L
But in this case

n a u
I7 (ock,- . ——] Ry (Tas - o 70 = JJ bp! g0l
i=1 31,— p=1

i.e. the formula for the determination of the Rajbman kernels of the analytic
Zadeh model can be obtained in the following way

i=1

I3

.0
ak; + 5—] R,\'A,r:(e)(f) = gk(T)'

0T ;

Thus, using the above expression, if the input is an AR(1) test process,
the Rajbman weighting functions can be computed by a relatively simple
method. Naturally we may obtain entirely similar resulis for discrete (or
discretised) input/output processes as well.

Finally let us consider the case when the input is a Gaussian second order
autoregressive stationary process with zero mean, i.e.

%) = ax(t) -+ px(e) 4+ e(z)
or in the frequency domain the transfer function of filleris

1

—f— a5 -+ §?

H(s) =

where s is the variable of Laplace’s transformation and 4,, 2, are the roots of
the equation —f — «s -+~ $?=0 and so the transfer function of the filter is
1 1 1 1 ]
H(S) — - n " p—

(A 4+ 8)(2a 4+ 9) bp— I3 i+ Ayts

from where the weighting function of the filter is

h(T) = (e ),

Ao — Ay
It can be proved easily that the transfer function of A"(s)
1 nof 1

Hy(s)= H[I"(7)] = m% Z) (=1F (n— Ky + Bhyts

n!

n

JI (n— k)2 = kly -+ s

k

ks ‘
Let fl’ﬂl(? — k)i, R L9 }= P,
j=1 =1 871'
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Using the operator P, we can prove the following formula for the deter-
mination of the Rajbman kernels if the input is an AR(2) process (according to
the above aigorithm—in the case of the AR(1) input);

n
Py{Rya7)} = n! g(2) 1] k;!.
Jj=1

Remark : Naturally the above method can be used also for the identification of
Volterra kernels according to the results obtained by Schetzen in the frequency
domain [2]. Thus

Ryceolttys v vn ) = § - a(sys + + o8 )hltty — 81), -+ + oh(y — s))ds, . . . ds;
] 0

‘e s
H

where the Volterra (Wiener) kernels a (7, . . ., 7;) can be computed by formula:
when the input is an AR(1) process

1 1 .0
— I |+ —} Rypiolty oo 7)) = alzy 0 2 T)e
FI j=1 Tj
If the input is an AR(2) one
i, 0 0
a(tyy o oo ylg) = — A ——] Ao+ —-——] Ry, o(u, ;)
n! ou; ou; |

6. Imporiant special cases

Let us now consider the application of the above results ... for asecond...
order Zadeh model (with second degrees).

The determination of the second order kernel a,,(...) can be obtained
by the formula

where
R,(7,0) = E{y())Aafe(t — 1)1 4afe(t — o)1}

It can be noticed that if there were a second order kernel a,5 (. . . ) as well
then,—aceording to the algorithm introduced we first have to chose the kernel

3a.5(1%75) = (;4+ _?_.. (31_1_ _a__

97 97 R:JAL(TI? Ty) (6.2)
1 2

and
Ry (mm) = E(y() Aol — )] Aofe(t — 9)].

In this case the computation of the kernel a,, (. . .) can be carried out by
the expression

2a55(7,6) + 3a,5(7,0)e ) = [2;44 £27.~7— »———J Rya(7,0).
i
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46
Furthermore
.0 . 0
2a«11('t-,0') == {& - "_) (“ e RyAn(T’G‘)
ot oo
an(m.0) = [+ —3—) 20t 2| = Ry (1,0). (6.3)
| dT o0 ’
For the one dimensional kernels of second order Zadeh models (n = 2)
we get
0
a,(7) = la+ —| R, (1)
ot
and
a(?) = [20+ g,i} [Byi(r) = V2 | [ an(rso)e =t Ardo] (6.4)
T X
when assuming that ag(.) =a,()=...=10
Analogously, if the input is a Gaussian AR(2) stationary process then

for example for the kernel a,, (., .) we obtain the following similar result

, - \
[22.1~;- —‘?-} (;.1 a2 o, —(3-] |2+ 9], )
ov ov ov )\ ou (6.5)
l“‘a\n‘:(). » AR 9
P ——J 22, + R, 2 (u.w)) = DRR, 2 (uv) = 2ass(u.v)
u ou
because
uv
1 . [(e“z}"(”“s) — Yot A)(e—s) < o—2%:(u—s)

R},Am(c)(u,v) — ZJ(QQQ(S,:) - —
; ‘0} (o — 2p)*

v

S | e e — ).

(=) — e sz -
(Ao — 2Ap)*
00

[e‘—;'x(u—z) —_— e—;'z(u"‘z))] [(e'“;'l(l"-—’-) — 3—7-:(1"‘3))] . [e"':'l(l""z) — 8‘5‘2(1;‘2)]({5&]:

For practical applications let us compute the Rajbman kernels of the
second order Zadeh model from discretised samnples of the ergodie stationary

Gaussian Ij0 processes.
In this case the equation of the discrete second order Zadeh model is

_l..
NVF
2
:

B
)
1
_l,

ay (1) Ay(x—) + Z ayy(Pof) Ay X))
Fo =0

M

1
=3

b
Y =
H

H

+ Z ay,0(i J) Ay ol ) =
> 2
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.. R |
-+ 2‘122(7'9])‘422("]);~ (6.6)
i 2
>j

If the weighting coefficients of the filter of the input process are ¢,
(p=1,2....) then the polynomial cross correlation function between the
input filter (source) white noise and the output process of the second order
Zadeh model has the forms:

R.ai(p) = é a;(I)cp—s (6.7)

p’q . - q &
RyA:;(P:‘J) = Zan(z’?]) Cp—i€g—j + 2311(%])5‘0—}‘ Comis P >q

i>j i>j
and neglecting the kernel aj(i,§), i<Cj
Ryslp) = 3 axl)eis (68)
and

as(iyer—; -

Vi

i
(=1

If the input is an AR(1) process i.e. x,+ ox,_,==¢, (where ¢, N(0,1)) and
lol << 1, furthermore Pi(71) = 1 + pz™* we get the following relationships
(Pyfs7Ye;= 6, =0, ¢; = (— p)) if z is

PZ-Y) =1 — g2Z-1 (6.9)

Py(Z"")Ry(p) = ax(p)

R,.(p) = Rysi(p) — —{—3 2 2 gy (i) P
Pz ) Po(zz )R, 40,(p-9) = a1:(p.9)
Py(s1)Po(z3 )Ry 45,(pog) = a1a(p-q) P >9¢
Py(s7)Py(s )Ry 20, (p) = asi(pog) P >4
Po(ai Y Pa(s3 )Ry 22(p-9) = aas(p.q) p==¢.

In spite of the continuous case the powers of the discrete AR(2) (input)
processes are not autoregressive processes and so the identification of the
Rajbman kernels of Zadeh model (6.6) in the time domain can be carried out by
mere complicated methods, but that will be the subject of a forthcoming paper.
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Conclusions

The paper introduced a method for the determination of analyticeal
Zadeh models. The result obtained can be used for the nonparametric identi-
fication of the nonlinear systems represented by the analytic Zadeh functional
series and the structural estimation of noanlinear dynamic systems described by
a certain class of nenlinear statistic differential equations.
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