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Summary

The torque- and power-transmission properties of hydrodynamie drive-systems are
judged on basis of the steady-state characteristics, in the overwhelming majority of practical
applications, But with the greater part of the hydrodynamic drive-systems, there often oceur
nonsteady operational states, too, in the course of their normal operation, and these very ope-
rational states are the decisive ones with respect to dynamie excess loads. In this paper, the
general relationships of the identification of the characteristics of hydrodynamic drive-systems
are formulated and a numerical procedure is deseribed for the approximation of the nonstea-
dy torques by means of the method of least squares.

The Investigation Rodel

The scheme of the hydrodynamie drive-system is shown in Fig. 1. This
system is made up of prime mover E, hydrodynamic turbo-transmission H and
unit T applying load (braking). On the input-shaft of the hydrodynamic
turbo-transmission, speed n; and torque M, while on the output-shaft speed n,
and torque M, have been developed, respeciively. The direction of the energy
flow is indicated by arrows. From a system-theoretical point of view, the
hydrodynamic turbo-transmission can be identified as the transfer member
shown in Fig. 2. Speeds n; and n, are considered as the two input characieristics,
while torques M, and M, represent the two output characteristies.
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is introduced as the quotient of speeds n, and n, of the hydrodynamic turbo-
transmission. In the steady-state operation of the hydrodynamic turbo-trans-
mission of a given layout, the torques applied on the input and output shafts
can be described with a good approximation by means of the accepted expres-
sions [1]:

M, = K,(i) n} 2)
and

M, = Ky(i)nd . (3)

The torque-coefficient functions K (i) and K,(i) can be determined from the
transmission measurements. But functions K,(Z) and K (i) are not independent
from each other. If the generally accepted torque-ratio (multiplication):

def —WIZ

b o= 4
M, @

is iniroduced, then by substituting (2) and (3) the following expression is
reeeived:

L Wy f&?_(l:)né _ 1&2(3)-7: : (5)
M, K, (i)n? K@)

i.e. kis also a function of i (k = & (7)). From the foregoing it follows:

K (5) = DO ©)

12

Since in practical cases, functions K (I) and K(i) are continuous and
take bounded-values at i = 0, therefore
lim K,(i) = =~ (M)
i—0
As a preparatory task for the identification of the characteristic curve,
it should be considered that the smooth variation of function K, (i) enables
it to be approximated by the polynomial form of the I'" power of variable i.e.:

K(@y~ay+a i+ ...+ aqi (8)

Similarly, if the torque-ratio (multiplication) function k (i) is approximat-
ed in the form of

k(i)NbO_:_bli_.i-""]r‘bmim (9)

on the basis of expression (6), with r = [ 4 m being in force as for K, (i). the
following relationship is obtained:

Kz(i)%-—-:——_—%cg—}—cr&i%—...—:~c,i’—'3. (10)
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So the following relationships are in force with a good approximation:

M, = K,(i)n3~ ( Sai/ini= (2 e (11)
o ’ r § r 719 2 o
M, = Ky(i)ng~ | Scii2| n= { S, n. (12)
‘J:O Jj=0 n;

In this way, the mathematical model required to identify the steady-
state turbo-transmission characteristic curves is provided by the expression
received in (11) and (12)*.

There is a possibility to determine the unknown coefficients a4, a,, . . . ,q;
and ¢g. ¢q, . . ..Cr contained in relationships (11) and (12), with the use of the
real quaternions ny, n,, M, and M, received by measurements. With vectors:

n = [n.n,]7 and M = [M M,]T

being introduced as the input and output characteristics of the transfer member

to be identified (Fig. 2.), and with the parameter-vectors: a = [ay, - . ., q;]° and
e=[cp.. 6] being used, respectively, the minimum problem**
D(a, ¢) = > (M; — H(nsa.c))* = min! (13)

(s)
can be formulated, the solution of which results in receiving the optimum
parameter-vectors 4 and &.

Vector-function H in (13) can be considered as a concise form of rela-
tionships (11) and (12), since it gives the mathematical model of the identifica-
tion mentioned above,

The objective function (13) can be basically considered as an optimum
criterion formulated by means of the method of least squares. This criterion
provides the required optimum parameters by the solution of the linear alge-
braic set of equations determined through the vanishing of the partial
derivatives of function @(a, e).

The identification of the nonsteady-state characteristic curves of the
hydrodynamic turbo-transmission can be carried out by expanding the state-
ments made in the foregoing, as described further on.

The general problem of the characieristic curve identifieation

An investigation model containing the nonsteady-state operating condi-
tions, too, is obtained if the expressions reflecting the time-dependencies of
speeds n; and n, are added to the expressions (11) and (12) taken from the

* As for the detailed explanation of the theoretical basis for the system identification,
see [4] and [5].

** In (13) subseript s identifies the couples of torques and speeds measured at the same
instant.
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foregoing chapter. This involves that the derivatives fiy, 7y, . . . and 7y, 1, . . .
with respect to time are to be included in both expressions but with unknown
coefficients.

According to the above said, it can be written:
M, Hy(n,ns,a) +~ HE(nyunq,0, - .o, Roulolly, - . ., A3LGH) (14)
and
Myme Hy(nyny,e) - Hi(nqnqofty, . oy ToTlnsfig, - . ., Ag,Cy) (15)

where H, and H, are the two coordinate-functions of the vector-function H
given in (13), while H{ and H are the two coordinate-functions characterizing
the nonsteady-state behaviour.*™

Functions HY and HY in (14) and (15) are reckoned through Taylor-
series when setting the identification problem. The first few members of
Taylor’s expansion are concerned with the identification problem. Thus e.g.
with the linear members retained:

Hf% Allﬁl - _/lilt_)‘T'il + RN —L‘ Cnﬁ'i ‘—:‘" Cl:_)ﬁz ':— “ e (

et

6)

Hi~s Agifty 4 Agoiiy + oo+ Cogtty + Cogity 1o . 17
With the constant coefficients in expressions (16) and (17) included in param-
eter-vector A;, €;, A, and C,, the linearized identification problem can be set
in the following way using the mathematical model:

M~ae Hm(nleﬁpﬁls sl n‘?‘tﬁzvﬁ'z-, ceesas e, A 617 A, Cz) . (18)

According to Fig. 3, let us assume that time-function n(t) as an input
process arrives at the input of transfer system outlined here. The input process
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arrives at the input of the mathematical model with a transfer property
determined by formula (18) and at the input of the member with a transfer
property H, as representing the real drive-system, through the input branching

** In expressions (14) and (15), respectively, functions H; and H, can depend on n, and
n,y, respectively, only in a way that their steady-state values be equal to zero.
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in an unchanged magnitude. The above mentioned problems can be imagined
in a way that the realization of the torque response process is carried on simul-
taneously in the mathematical model with a transfer property H,, and in the
real system with a transfer property H, i.e. the response process M, (t) realized
in the mathematical model is yielded by caleulations and the response process
M, (t) of t-e real system is yielded by measuremenis.

The difference between the two response processes should be minimized
by means of an optimal selection of the parameters in vector function H,,. So
the objective function cazn be written as follows:®

{
B2, ¢, Ay, €y, Ay, €) = [ (3,(t) — M,(2)2 df = min ! (19)
1]

So the optimum eriterion is set again on the principle of the method of
least squares but now it involves the minimum value according to the norm
of function-space L, because of the time-functions used here, i.e. with the
parameters optimized. the funetion ¥, (t) lies closest to the real torque response
funection M (t) in the mean square sense.

The extremization problem formulated in (19) can be solved through the
numerical solution of the algebraic set of equations determined by the vanish-
ing of the partial derivatives of function .

The solution cf the identificaticn problem can he carried out expediently
in two steps. As the first step, the parameter-vectors a and b of vector-function
H in equation (13) can be determined in the knowledge of measurement results
of the steady-state operating conditions. As a second step, with the help of the
measurement results received under nonsteady-state operating conditions, the
components of the yet unknown parameter-vectors A, and €; of vector-function

Ts
H,, in (18) satisfying the minimum criterion in (19) can be calcuated.

Ideniification of the steady-state characteristic curves

In the knowledge of the steady-state characteristic curves of the hydro-
dynamic drive-system, coefficients &; and ¢; of the torque functions satisfying
the minimum criterion in (13) can be determined. For the measuring investi-
gations of the steady-state characteristic curves, torque values M, and M,
are generally determined at discrete speed-ratios of ¢ calculated {rom steady-
state speeds n, and n, related to the given operating states. For carrying out
proper calculations, the minimum criterion in (13) is used in the form of two
scalar equations, since only torque coordinate 3}, is influenced by parvameter-
vector a, and only torque coordinate M, by parameter-vector e. Accordingly,
the identification of the two torque-functions can he carried cut separately.

* In (19) t, stands for the upper limit of the time interval used as a basis of identification.
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Identification of the primary-side steady-state torque-funciion

According to the above, the first equation obtainable from criterion (13),
with the measurement results assumed of the discrete operating states IV, in

number, and with substituting relationship (11), can be written in the following
form:

- Ny l . . 2 .
Oi(a) = 3 (.Mls - > ajnésn%?] = min | (20)
) s=1 J=0 /

Further on, let the partial derivatives of function @, be formed with
Tespect to a;3 7= 0,1.2,....1 which should be of zero value because of the
minimum eriterion. In a general case. the set of equations

9D (2] N . .
___1(__.2,:_\;‘7{ Z‘a,,zqs j;z 1; = 0,
aa; s=1
7j=012 ... 21

is obtained, which is a linear, inhomogeneous set of equations with respect to
parameters ;. With the introduction of matrix notations, the following
relationship can be written:

Ba=d (22)

where the form of mairix A, of a size [ X1 will be:

B, = [ Znj 2ndg nos .. 2nd

!

Lo Znict Al
3 s 2 g
Zndinye Enis nde ... Zndctnkl

Y, 4 [ S 55
Szt aby Tndrinbt o Znic¥ agl

while the l-dimensicn vector on the right side can he written as follows:
A soo—f .1 A 1T :
d, = [Zni Mg, EngaeMyg. ... Zndiinb M. (24)

The summations in expressions (23) and (24) are related to index s. The
optimum values d; of the constants in the expression of torque function M, are
provided by the solution of a set of equations (22).

Identification of the secondary-side sieady-state torque-function

The determination of the parameters of secondary-side torque-function
M, is accomplished in a way quite similar to that of the primary-side. Let the
measured secondary torque be known at the measuring points IV, in number.
In this way, the following minimum problem is determined:

— min ! (25)
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[3]
(S]]

by the second equation obtainable from minimum-criterion (13) considering
(12). With the partial derivatives of function ®@,(¢) formed with respect to
variables ¢;; j =0, 1, 2, ..., r which should be of zero value because of the
minimum ecriterion, again a linear set of equations is received which can be
written in the following form using matrix notations:

By,e=4, (26)
Here
B, = Zn’%s =135 Ty Enf;l nhs
[ Tnd, ny, Endnd, IrdT it I
[Sn‘igf nis ZndsT nist. .. Tnis¥nit J (27)
and
d, = [Zni Mo, ZnynaMog, ..., Zndini M, 7. (28)

The summations in relationships (27) and (28) are related to index s.

The optimum values ¢; of the parameters in the expressions of torque
function M, are provided by the solution of the linear set of equations (26).

If functions M, and M, are to be approximated by the equal number of
members (Il =), as well as, if the measured primary and secondary-side
torques are related to the same operating states with the same index s, then
B, = B,. It should be noted, however, that more simple calculations are
involved if during the measurements, the steadiness of primary-side speed n,
can be ensured by the regulation of the driving prime mover because, in this
case, n, becomes independent from index s identifying the operating states
and its powers can be factored out of the sum-expressions determining the
matrix elements.

Identification of

the nonsteady-staie characteristic eurves

For the identification process of the nonsteady-state primary and second-
ary torques in expressions (14) and (15), respectively, the optimum parameter-
vectors 8 and ¢ valid for the steady-state operating conditions determined in the
foregoing are assumed to be known, as also the steady-state torque-components
H, and H,. The nonsteady-state torque deviations can be calculated as the
difference between real torque-time functions M, (t) and M, (t) measured in a
sufficiently long® time-interval [0, ,] and the steady-state torques caleulable
from the actual values of time-functions n,(t) and ny(t) according to (11) and
(12) with the help of parameter-vectors & and ¢ as follows:

AML () = M,() — Hy(ny,n, 4) (29)
AM(2) = Mo(i) — Hy(npns, ).




56 1. ZOBORY—A, SZABO

In the following, identification represents the approximation to these
torque “deviations” with the help of functions Hf and Hj according formulae
(16) and (17). In this way, the optimum-criterion in (19) can also be written
by means of the following two scalar conditions:

Du(Ap) = [ 1AMy — (s + Ayt -+ Gy -+ Cygia + . ) de =
= min ! (30)

and
Din(L2,Gr) = J‘In(—/-l—nfz—‘ (Aogiey + Aootiy + oo - Corig + Cogtig + .. L)) di=
’ = min ! (31)

In a way similar to the 1dentification of the steady-state torques, the
identification of the nonsteady-state torques at the primary and secondary
side can also be carried out separately.

Identification of the nonsteady-state primary torques

The identification of the nonsteady-state primary torque involves the
determination of parameter vectors A, and C; satisfying minimum criterion (30).
In order to achieve this, the necessary partial derivatives with respect to the
components of parameter vectors A; and C; should be formed iz turn, which
must be equal to zero according to the minimum criterion. Thus e.g.

3

_9@1;(4’___%_1& — f 2(AM, — (A iyt Aty oo b CptiatCrafty .. ) %
“£11 g
X rydt = 0 (32)
3@ A 9C Lo S - . .
M—L(‘;é_l—i = ——OS 2(AM, — (Apyng+Apity + o oo Cing+Crofia -+ .. L)) X
11

With the integral resolved into members and the constants factored out,
a linear set of equations results expressed in the usual matrix-form as follows:

Bin oy = 4y, (33)

* The length of the measurement interval is to be determined so that the normally
expectable operating conditions should be represented by the operating states and operating
state-variations realized within the time-interval in the drive-system.
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where
B, = [ (n3de fndde ... fnnade (nqfiede. ..
L L c ;o (34)
§rgfiodt  [hgniadt. .. fRonade (gydi. ..
and
o = [4;, €], (35)
Ayy = [(aMinds, . .., § AMinodt, .. 7 . (36

The integral-signs indicate an integration in the whole domain [0, 7,].
The optimum parameter values are contained by solution-vector &, received
as the solution of the set of equations.

Identificaiion of the nonsteady-state secondary torgue

The identification of the nonsteady-state secondary torque involves the
determination of vectors A, and €, representing the solution of the minimum
problem (31). Basically, this takes place in a way quite similar to that used in
describing the identification of the primary torque. Inasmuch, derivatives of
the same order are considered in both cases of identification, the coefficient-
matrix of the resulting set of equations will be common with them, so the linear
set of equations

Bin oy = 4, (37

is obtained where
oty = [As T, (38)
Ay = [[AM,ony di, o .., §AM R, dt, ... (39)

The optimum values of the parameters in the nonsteady-state torque
function are provided by the solution-vector ¢, of equation-system (37).

Concluding remarks

The application of the identification process described here and the
numerical method involved enable the results of the experimental investigations
of the hydrodynamic drive-systems to be evaluated by means of computer-
technique within the frame of a uniform mathematical model for both steady-
state and time-dependent operating conditions.

With the elaboration of the identification method, the concept of the
speed-ratic generally used in the theory of hydrodynamic drive-systems for
the description of the steady-state operation was teken as a starting point.
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But with the description of the nonsteady-state operation, the speed-ratio loses
its emphasized significance, and owing to the difficulty in treatment, it is
more expedient to consider the torque characteristics as functions depending
on the input and output speeds.

The resulting relationships were derived in the frame of a polynom model
but the essence of the train of thoughts applied here will be retained in the
case of the application of mathematical models based on functions of an other
type as well. With the Taylor-series expansion applied, in the end, an algebraic
set of equations is obtained to determine the optimum parameters.

Concerning the further developmeni of the identification method dis-
cussed here, it can be stated that a more complete description of the nonsteady-
state processes is received if the inner flow processes of the hydrodynamic
drive-gear are taken into consideration when constructing the mathematical
model. In connection with this, reference [3] and the investigations under way
at the Department of Vehicle Engineering at the Budapest Technical Univer-
sity, are referred to. The results of the latter investigations show that, in certain
cases, (when the rows of blades within the hydrodynamic element are relatively
far from each other), the hydrodynamic drive-system should be modelled as
a system having a memory, and this should be taken into consideration with
the identification process.
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