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Summary

Design of vehicle structures often involves the following problems:

— analysis of structural members with nonlinear stiffness characteristics (e.g. members be-
having differently in tension and in compression when the effect of tipping superstructures
is reckoned with):

— analysis of stability problems (e.g. consideration of lattice bars in autobus sidewalls):

— deliberate modification of stiffness characteristics upon inadequate outcomes (insuificient
or excessive strength).

A matrix equation for successive modifications offers an economical solution of these
rather simple nonlinear problems as a series of linear problems.

Introduction

Solution of a hyperstatic problem with several redundancies yields for
stresses in the hyperstatic structure [1]:

L=A —-BD B"RA = (E — BD-'B'R)A

where:

D 'B" RA= —X — matrix of connecting forces, thus. concisely:

L=A-1-BX

where:
A internal loads of the basic system due to an outer load:
B internal loads of the basic system due to unit Joads:
R flexibility matrix comprising stiffness characteristics;
D=BTRB connection displacements due to unit loads;

D,= B"RA connection displacements due to an outer load.

Be member J of the structure of limited load capacity imposed an ulti-
mate stress €. Calculations above have yielded for struetural member J:

LJ~_— AJ—f BJng €
where AJ, BJ, Xj are minormatrices of A, B, X, resp.. relating to member J.
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To ease computations. generally a transforming matrix T can be found.
vielding, after transforming the basic system as x =TTy [2]. [3]:

Li=Ey,=y,<¢

that is. the new basie system is cut exactly at members of imited load capaecity.

where: AJ =0, Bj = E.

In the relationship for the new basic system:

. o
vy—e=0

specifving e, = 0. v, < O vields the effect of a one-wayv connection {(absorbing
At S R )

compressions alone). while specifying €, 7 O leads to the solation of the
stahility problem.

In solving the stability problem. data of

€, comprise ecritical forces in
the members.

In final account, a plastic hinge in the structure leads te a similar

Let us find the minimum of W (x) under condition:
x;, <0 i€J.

Its physical purport makes matrix D a symmetric. positive definite
matrix.

The minimization problem is a quadratic programming problem strictly
convex from below, with a minimum point x* given by the Kuhn—Tucker
theorem necessary and sufficient conditions such as:

Be I the set of subscripts with no limiting condition for variable a;,
and be x; the vector of these variables. Be J subscripts referring to variables
meeting condition x; <{ 0. and be x,; vector of these variables.

Writing matrix D. as well as vectors d;, and x according to blocks cor-
responding to subscript sets I and J:

D[I DIJ - od = dol

D= ;
D, Dy,

where DIJ = Dg,.
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With these notations, the energy cumulated in the structure is:

74 1 y i ; 1 T ¢ 1 1
Wix,.x;) = 7x1rD“x1 +x7Dx, +TXJDJJXJ+ dix; +dlx, +y

Lagrangian function for the minimization problem:

L(X{.XJ.)\) == W(X].XJ) ; )\:I;XJ

According to the Kuhn—Tucker theorem, if x* = (x}, x7) is the solu-

tion of the minimization problem. then a Lagrangian multiplier A} = 0

exists, such that:
Ly, (x%. XJ A5 =0
MTLUxF, x5, M%) =0

leading, in the actual case. to the set of conditions:

D,xi -+ D;x%+dy; =0
Byxf + Dy +doy = — A; <0

In the actual case, the Lagrangian multiplier A, has a concrete physical

meaning: deformations of structural members under the limiting condition.

Remind that sign conventions for x% and A% impose condition A57x% = 0

to be met for each coordinate. i.e.:

.jxr:O vjEJ.

J

h )

This latter is the so-called condition of complementarity, namely if there

is a sign limitation for variable x;
objective function gradient, is zero.
This phenomenon is of use in generating the solution algorithm.

Let us introduce sets of subscripts:

J@=(ie] i m<0)
Jo(x) = {ieJ :ox; =0}
JH(x) = {ieJ : x; >0}

Jix) = {ieJ°x) ¢ T+ dy>0)
Jow) = {ieJ°@) T+ dy < 0}

where d; is ith vector of matrix D.

then this latter, or coordinate j of the
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Steps for solving the minimization problem are:

1. k=20, 1,=R"
¢ = argmin W{(x)

Tr

T for i€ Jo(E)UJ (R UIT
l0, for ieJ+()

4. KIUJ(=)=0or
d7xF 4+ dyy=0 wielUJ ()

ho

(8]
R
I

then the fifth, otherwise the seventh step is:

5. If df<"+d,; <0 vieJ°(z") then
x* =x" results, otherwise
Ykj = <* and

6. Ty = {X€R" 15, =0, for 1€J2(z")}

k =k + 1 and computation has to be resumed with step 2.

~1

Tpey = {X€R":1x; = 0. for i€ J(x")}
k =k + 1 and back to step 2.
Repetition of step 2 is simply an easy. economical recomputation of con-
nection forces in the consecutively modified structure by producing the diad-

modified inverse [4] of coefficient matrix B. yielding, after the ith modifica-
tion. for internal loads in the structure:

Li = Li—l b BDZ——_llBIT(BlDl__llBT —:‘ _'J Ri—l)—lLl’_Li
where:

L, ., internal loads in the structure after the i-1th modification;

L;_,; minormatrix of L;_; (row vectors for elements modified i times):
B, minormatrix of B after the ith modification

AR, flexibility matrix of the ith modification

and
DY = Dy — B BL (B, By B, + AR7) 1B, Db

Remind that under the actual limiting condition:

AR = 0.
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Convergence analysis

Any of points x* is an admitted point. If condition in step 5 is met, then
in faet. a solution results, namely Kuhn—Tucker theorems in step 2 are met.
Provided condition in step 4 is failed, a finite number of repetitions of step 7
leads to a subspace where minimum is at x*. If then condition in step 5 is failed.
the obtained y,; is not yet a solution of the minimization problem; antigradient
of the objective function defines a downward slope. Finite number of repeti-
tions of step 7 yields another point y,;., that is a place for a minimum in the
corresponding suhspace. Function value tending to decrease along the set of
peints y,; ¥,;.;. ... subspaces where these points define places of minima
cannot be identical, involving different sets of subscripts to define them. There
being a finite number of possible groupings of a finite number of subscripts.
the algorithm has to end in a finite number of steps.

Now, the complementarity theorem has been utilized where conditions
in step 5 were failed that would yield ?.J: < 0. Now )'Ji is deduced from the
basis defining the system to be replaced by the corresponding x ..

The procedure is simplified by the orthogonality of the limiting condi-
tions, thus, if certain coordinates failed the condition of non-positivity. then
in the other coordinates the projection on the corresponding coordinate axes
of the point kept its sign. an easv way to obtain admitted points.

Amnalysis of structural members with nonlinear stiffness characteristics under
general limiting conditions

In the case of an awkward transformation of the basic svstem or of the
prevalence of limiting conditions of a form

Bx +-a<0

more general than is the condition of non-positivity, the essentials of the algo-
rithm may subsist, only a direct variation of projecting to, and minimizing in.
the subspace has to be applied, taking care of the integrity of already fulfilled
conditions. The algorithm relying on the method of conjugated gradients may
suit to solve the problem, namely it accomplishes minimization in the sub-
space in a finite number of steps. Along the conjugated directions the function
value decreases, and so the generated algorithm is expected to remain finite.
Let us find the minimum of

W(x) = —1—XTDX L dfx -y
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under limiting condition
Bx +a <0,
supposing that there exists a vector x, such that Bx; - a < 0.
Writing each row of the system of conditions:
bx+a;=0,1¢€J.
Now. the Kuhn—Trucker conditions becomé:
x - Bon+d,=0
Bx ta=—AL0
A>0
u’(Bx -+ 2) =u’A =0

This latter is the condition of complementarity, to be met coordinate-wise.
Introducing notation:

J)y={itbx ~a, =0, icJ}

B . denoting the matrix with vectors b; under i £ J%(x) as rows.

Projector matrix P = B (BB 1)7B . projects to the subspace
siretched by row vectors of matrl_\ B

The minimization problem may be solved as:

1. E=20
2. i =J°(x"), Py =BJ,(B;B)) By
3. If (E—P;)(Dx*+d) =0
step 4, otherwise step 7 follows.
4. If w, = (B;BJ) Byi(Dsk +dy) <0 vieJ(xH)
then x* = x* and the computation ends, otherwise
5. Tor = {SER":hx 4+ a; = 0, i€ (i€ J°(x") :uf < 0} = Ji+1})
6. © %y, = argmin W(x) and back to step 2
Thi1
1. Ty = {XER":byx + a; = 0. i€J°(x) = J1)

and back to step 6.

—u* obtained in step 4 is the minimum norm solution of equation D x - d,
+ Bl u =0, namely

(B;BJ)) 1B, =Bj,

is the pseudo-inverse of matrix B, .
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Minimization in subspace 7,., in step 6 may be accomplished by the fol-
lowing conjugated gradient procedure:

1. j=0

pi=—(E— Pj) (Dx* — d,)

2. J;-t-1 = {ie J"1; bi’?j—il = O}
_ . a; — byxfd
%= min —————
’Elj+1 Dip_/*l
' T..DxA _
%= min | — ?Jr—i-*—— . xJ,H}
-1 0Pt }
3. N i TInY TP
4 (B — P, (Bxt 42
pir=— (E — Pp)(Dx" —d) e : P

e _“(E o ?./i) (Bxl‘f:j—l_l_ do)iiz

Selection of the step length according to step 2 of the procedure provides
for obtaining the minimum point under the limiting condition along the given
direction p.., in a finite number of steps [5].

From the minimization problem under general limiting conditions also
the case of simpler limiting conditions may be deduced, simplifying also the
procedure.
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