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Summary 

Design of vehiele structures often inyolyes the following problems: 
analysis of structural members with nonlinear stiffnes" characteristics (e.g. members be­
having differently in tension and in compression when the effect of tipping superstructures 
is reckoned with); 
analysis of stability problems (e.g. consideration of lattice bars in auto bus sidewalls); 
deliberate modification of stiffness characteristics upon inadequate outcomes (insufficient 
or excessiye strength). 

A matrix equation for successiye modifications offers an economical solution of these 
rather simple nonlinear problems as a series of linear problems. 

Introduction 

Solution of a hyperstatic problem with several redundancies yields for 
stresses in the hyperstatic structure [1]: 

where: 

D-IBTRA= -X matrix of connecting forces, thus, concisely; 

where: 

A 
B 
R 
D = BTRB 
Do=BTRA 

L = A + BX 

internal loads of the basic system due to an outer load: 
internal loads of the basic system due to unit loads; 
flexibility matrix comprising stiffness characteristics; 

connection displacements due to unit loads; 
connection displacements due to an outer load. 

Be member J of the structure of limited load capacity imposed an ulti­
mate stress Er Calculations above have yielded for structural member J: 

L J = A J + B JX J < E J 

where A)' B)' XJ are minormatrices of A, B, X, resp., relating to member J. 

4* 
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To ease computations, generally a transforming matrix T can he found, 
yielding, after transforming the basic system as x = TTy [2]. [3]: 

Ev • J YJ < EJ 

that is, the new hasic system is cut exactly at members oflimited load capacity. 

where: AJ = O. BJ = E-
In the relationship for t]1(' ne"w basic system: 

speeifying EJ = O. Yj 
compressions alonf'). 
stahility prohlem. 

v 
~ J o 

o yields the effect of a one-il'ay e'olllH'ction (absorbing 
while q}eeifying EJ 0 leads to the solution of the 

In soh'ing tlw ~tahility pro];l,'m. aata of EJ comprise critical [ore(,5 in 

the· memhe'}"s. 
In final aceount. a plastic hingc in the strue'tUl"C leads to a similar 

prohle'm. irre:3pectiyc of the' gradual formation of the pla!3tic hinge. and COl!­

sidering only the ultimate eonditiol1 as critical in approximate calculations . 

• "",UHBY"", of stru.ctnral inernhcrs \,,-ith noniinear stiffness characteristics 

Energy aceumulated in tlw examined structure: 

. 1 T ." Tf(x) = - x Dx d,1x . ') 

Let us find the lllUllmum of TV( x) under eondi tion; 

o i E J. 

Its physical purport makes matrix D a s"\"111metric. positiy ... definite 
matrix. 

The minimization prohlem is a quadratic programming prohlem strictly 
cony!'x from helow. with a minimum point x* giyen by the Kuhn-Tucker 
theorem necessary and sufficient conditions such as: 

Be I the set of suhscripts with no limiting condition for yariable Xi' 

and he Xl the Yector of these yariahles. Be J suhscripts referring to yariahles 
meeting condition Xj < O. and he xJ Yector of these yariahles. 

Writing matrix D. as 'well as yectors do and X according to hlocks cor­
responding to subscript sets I and J: 
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'\\-ith these notations, the energy cumulated in the structure is: 

TT/(X x) - 1 xTD x 1 xTD x . 1 x-TD x ' dT X ' dT X '" .... -f'-} ---I II-]-'--] JI-}- -J }}-}, of-f-'- O)-}" 2 "0 

Lagrangian function for the minimization prohlem: 

L(Xf' x), A) = W(xf' x)) -:- AjX) 
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According to the Kuhn-Tucker theorem, if x* = (xf, xj) is the solu-

tion of the minimization prohlem, then a Lagrangian multiplier A j 0 
exists, such that: 

L~J(x}'. x]. Aj) = 0 

L;,ixj, xj. A}) = 0 

A*TL:;.(x,[, xj, A}) = 0 

x) < 0 

leading, in the actual case. to the set of conditions: 

DJfx}' , DJjx] + do/ 0 

D)/xi" -'- DJJxj + dO) = A] < 0 

xj < 0, Ay x'J = 0 

In the actual case, the Lagrangian multiplier A) has a concrete physical 
meaning: deformations of structural memhers under the limiting condition. 

Remind that sign conventions for xj and Aj impose condition AjY xj = 0 
to he met for each coordinate, i.e.: 

This latter is the so-called condition of complementarity, namely if there 
is a sign limitation for variable Xj' then this latter, or coordinate j of the 
objective function gradient, is zero. 

This phenomenon is of use in generating the solution algorithm. 
Let us introduce sets of subscripts: 

J-(X) = {iEJ 

P(x) = {iEJ 

J+(x) = {iEJ 

J":.(x) = {iEP(x) 

J':'..(x) = {iEP(x) 

where d i is ith vector of matrix D. 

Xi < O} 

Xi = O} 

Xi >O} 

dTx + dOi > O} 

dTx dOi < O} 
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Steps for solving the minimization problem are: 

1. 

2. 

3. 

4. 

k 

x" = argmin W(x) 

x} = rx~', for i E ]-(x") U P(x/c) U I 
1o, for i E J + (xt:) 

If I U J-(x") = 0 or 

then the fifth, otherwise the seventh step is: 

6. 

7. 

results. otherwise 

Ykj = x" and 

-ricH = {x E Rn : Xi = 0, for i EJ::'(x")} 

k k + 1 and computation has to be resumed with step 2. 

'rHl = {x ERn: Xi = 0, for i E P(x")} 

k = k + 1 and back to step 2. 

Repetition of step 2 is simply an easy, economical recomputation of con­
nection forces in the consecutively modified structure by producing the diad­
modified inverse [4] of coefficient matrix D, yielding, after the ith modifica­
tion, for internal loads in the structure: 

where: 

L i - i 

L i - l ,i 

Bi 
L1Ri 

and 

internal loads in the structure after the i-lth modification; 
minormatrix of L i - l (row vectors for elements modified i times); 
minormatrix of B after the ith modification 
flexibility matrix of the ith modification 

B -1 D-l D-l BT (B B-1 BT I AR-l)-lB D-l 
;-1 = ;-2 - ;-2 ;-1 i-I ;-2 i-I T "-I i ;-1 i-2 

Remind that under the actual limiting condition: 
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Convergence analysis 

Any of points xk is an admitted point. If condition in step 5 is met, then 
in facL a solution results, namely Kuhn-Tucker theorems in step 2 are met. 
Provided condition in step 4 is failed, a finite number of repetitions of step 7 
leads to a subspace where minimum is at x". If then condition in step 5 is failed. 
the obtained Yl;j is not yet a solution of the minimization problem; antigradient 
of the objective function defines a downward slope. Finite number of repeti­

tions of step 7 yields another point Ykj+l that is a place for a minimum in the 
co:rresponding subspace. Function value tending to decrease along the set of 

points Ylej, Yl;j-'-l' ••• , subspaces where these points define places of minima 
cannot he identicaL involving different sets of subscripts to define them. There 
heing a finite numher of possible groupings of a finite numher of suhscripts. 
the algorithm has to end in a finite number of steps. 

Now, the complementarity theorem has been utilized where conditions 

in step 5 'were failed that would yield if < O. Now )'L is deduced from the 
hasis defining the system to be replaced by the corresponding x j:: 

The procedure is simplified by the orthogonality of the limiting condi­
tions, thus, if certain coordinates failed the condition of non-positivit),. then 
in the other coordinates the projection on the corresponding coordinate axes 
of the point kept its sign. an easy way to ohtain admitted points. 

Analysis of structural members ,\ith nonlinear stiffness characteristics under 
general limiting conditions 

In the case of an awkward transformation of the hasic system or of the 
prevalence of limiting conditions of a form 

Bx + a 0 

more general than is the condition of non-positivity, the essentials of the algo­
rithm may subsist, only a direct variation of projecting to, and minimizing in. 
the subspace has to be applied, taking care of the integrity of already fulfilled 

conditions. The algorithm relying on the method of conjugated gradients may 
suit to solve the problem, namely it accomplishes minimization in the sub­
space in a finite number of steps. Along the conjugated directions the function 
value decreases, and so the generated algorithm is expected to remain finite. 

Let us find the minimum of 

d[x + y 
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under limiting condition 

Bx + a 0, 

supposing that there exists a vector Xo such that B Xo + a < O. 
Writing each row of the system of conditions: 

hiX + ai = 0, i E J. 

~ow, the Kuhn-Trucker conditions become: 

Dx+BTu do=O 

Bx + a = -'A < 0 

'A>O 

This latter is the condition of complementarity, to be met coordinate-wise. 
Introducing notation: 

B I denoting the matrix 'with vectors hi under i E JO(x) as rows. 
Projector matrix PI Bj,(B j'Bj,)-lB j' projects to the subspace 

stretched by row vectors of matrix Bp. 
The minimization problem may he soh'ed as: 

1. k=O 

2. J~ = P(Xli), Pp, = BjdBjkBjJ-1Bjk 

3. If (E P jI) (Dx" do) = 0 

step 4, otherwise step 7 follows. 

4·. 

then x* = xl-: and the computation ends, otherwise 

Ui = 0, iE{iEP(x") :uy < O} = JI-:+1} 

6. Xk+1 = argmin W(x) and back to step 2. 
7:];+1 

7. 

and back to step 6. 

-ul-: obtained in step 4 is the minimum norm solution of equation D x + d u + 
+ Bjk u = 0, namely 

(B jk B jk) -1 B Jt = B;', 

is the pseudo-inverse of matri-x: B JI:' 
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Minimization in subspace Tk-'-l in step 6 may be accomplished by the fol· 
lowing conjugated gradient procedure: 

1. 

3. 

-1.. 

j=O 

(fi hix/{,j 
X/-'-l = luin ------­

iE I!+, hi Pj+l 

(
' pT Dv!:') • J -'-1 ,-nun - ------. 

- T D PI'-l Pj+l 

i;(E 
j,(E 

Selection of the step length according to step :2 of the procedure provides 
for obtaining the minimum point under the limiting condition along the given 
direction PHI in a finite number of steps [5]. 

From the minimization problem under general limiting conditions also 
the case of simpler limiting conditions may be deduced, simplifying also the 
procedure. 
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