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The immense development of electronic computers in the past quarter
of a century permitted to realize the elaboration of numerical processes requir-
ing a vast volume of computation work for solving flow problems in the field
of hydrodynamics, considered so far as unmanageable, — reflecting more or
less correctly the involved problems — irrespective of the a priori approxima-
tive character of these processes,

For studying the problems of the flow of non-viscous ecompressible
liquids, a high number of various systems of equations were developed, repro-
ducing the studied phenomenon with different degrees of accuracy. A very
rich collection of the elahorated processes is found in (1).

Part of these processes (1), (2) apply the following systems of equations
for studying the flow of compressible liquids:
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where
M = pu, N = pv — unit volume liquid pulses in directions x and y resp.;
W = ui + vj — velocity of the liquid in directions x(u) and y(v) resp.;
¢ — density;
p — pressure;
¢ — intrinsic energy in unit velume of liquid.

In the present study the intrinsic energy of liquids is neglected, as it
was prepared mainly for studying the flow of the liquids, but the terms related
to the viseosity are taken into account.

Be p the friction coefficient of the liquid, then the frictional components
of the stress teasor in the liquid ia planar flow are:
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Let us for now these quantities into the vector quantities:
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Introducing the divergence of these quantities into the equation of pulse
variation:
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Derivates make it elear that the equations describe indeed the flow of compres-
sible viscous liquids.

Both motion equations are completed by the continuity equation;
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and the equation of state:
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The seemingly enforced inclusion of the conception of divergence in the system
of equations relies on formulae by F. N. Noh (1) for the determination of the
partial derivates and the divergence, which very well suit numerical purposes.
The basic idea of the name is as follows:
Assuming the function ‘f” of the rim JR lying in the plane %, y and inter-
preted in the range R to possess a sufficient number of derivates, then a point
may be stated to exist in the range R(xg, yv,),
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From both formulae it may be deduced that both derivates may be
substituted, with a very good approximation, by the following relationships

applied to the j* compartment (Fig. 1)
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Derivation formulae I, IT and IIT are crucial for the process entering all
the approximation formulae. The elaborated program, operates with compart-
ments of three and four corner-points, but for the sake of simplicity only
the four point compartments are considered in the following. If we assume
that at the n'® step all the data are available, then the difference equation of
the pulse variations after time interval At may be written as:
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During the processes the pressure in the individual compartments is

regarded as comstant, so partial derivatives dp/dx and dp/dy at point (k. 1)
may be replaced by:
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Here x,, xy, ¥, and y, are coordinates of the compartment centre. This
means essentially that the derivatives at point (k) arve expressed by the con-
tents of the four surrounding compartments.

The divergence of the momentum may be chtained for the general range
with the help of expression III. For the case of Fig. 2
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The place x of the interpretation of quantities with subseript 1/2 is
shown in Fig. 3.
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we may write
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etc. The divergence of the momentum N in direction y is calculated in the
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same way.

For calculating the expressions 7 - (z,) and W - (v,), first, components
Texs Tyy and Tyy have to be determined. As velocities u” and ¢" at corner points
of each compartment are known, their partial derivates, interpreted for the
compartment may be calculated with the help of expressions I and Il.7.,,
T and 7, may be calculated from the derivates as described above. In their
knowledge divergences V/ - (7,)" and V - (7,)" valid at point (%, I), are inter-
preted as the divergences of the rectangles laid on the gravity centres of the
four grid elements limiting point (k, [), i.e., essentially they are caiculated
similarly to the pulse divergences.

Now the new pulses Mp%! and Np}! can be calculated from the com-
ponents.

The density valid at point (k, 1) is caleulated as the mean density of
the four compartments surrounding the point, by the following expression
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The new velocities are obtained from the pulse variations and the
density as
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The density prevailing in the grid centre is obtained from the con-
tinuity equation as:
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On the basis of the expression of divergence applied to the rectangular
ranges:
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i.e. the pre-existing densities and the new velocity are used for determining
the divergence.

After the determination of the new densities the new pressures at the
compartment centre can be calculated with the help of the equation of state

P ’/..I'HI ”‘P(’)/"'—l ,I—U/)

Now, by the end of the step interval Jt all the data required for starting
the next step interval are available.

Our tests performed so far show that the behaviour of the described
process is — with a correctly chosen step interval Jt — utmost stable. Accord-
ind to our experiences it is sufficient to have a /i value shorter than the time
required for the wave propagation to attain one third of the narrowest grid
dimension, at the sound velocity in the liquid.

The presented example shows the case where the velocity of the liquid
riges in the x-direction instantaneously to 30 m/sec along the rim of the range
surrounding the vane submerged in the liquid; the result shown in the figure
represents the state after the 500-th step (Fig. 4).
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The vortex developing under the belly of the blade is shown ex-
cellently. The track of the particles, i.e. the streamline drawn in the figure
is given by the curves fitted to speed directions in each grid point.

Summary

This paper is concerned — by way of computer — with comparatively novel approach to
the solution of the governing differential equations of physics for viscous compressible fluid
motion in plane, at unsteady state flow. The paper describes the essential features of the new
method.
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