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Relying on measurements and statistical analyses, stochastic excitation
by the road profile of vehicles traveling at constant speed can be considered
as a normal process.

This is little surprising, since in practice, prevalence of the theory of
central limit distribution involves frequent processes to be considered as normal
at a fair approximation.

Normality is, however, of a high importance, since normal processes
are easy to describe statistically. Normal is known to be called a process if it
is of normal distribution for statistics of any order [1].

In case of statisties of order n, normal distribution of n dimensions is
unambiguocusly determined by the expected value veetor and the correlation
matrix.

Form the aspect of these analyses, it is advisable to point out some
fundamental simplifying statements referring to normality [1}. [2]. [3]. [4].

1. For a normal joint distribution of random variables &,, &,. £,. picking
out an arbitrary number k of them (1 <k < n). their entity forms
a normal distribution of k& dimensions.

2. For a normal joint distribution, and pair-wise uncorrelation of radnom
variables &,, ..., &, these are independent of each other.

3. If input of a linear system is a normal process, then also its output
is a normal process.

4. A normal process and its derivatives make up a normal process
together.

(92

If &(z, w) is a continuously differentiable normal stationary process,
and MJ[E(t, o)] = 0, then zero density NN, of its concrete realization
— in other words, the number of zero level intersections referred to
unit time — can be determined (¢ € T" being a set of parameters, and
w € Q being set of elementary events).
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Different terms of identical meaning are:
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(Rice’s formula)

where Rg(7) — autocorrelation function of £
Ri(7) — second derivative of R(7) with respect to 7;
S:(f) — spectral density function of &
D(&) — standard deviation of £
D’(&") — standard deviation of the first derivative of &.

In the following, the travel process of local transit buses between two
stops, approximated by a so-called “trapezium’™ speed-time travel diagram
has been examined, taking also nodding vibrations at start and slowing down
into consideration [5].

Suspension characteristics of the tested bus were linearized [6]. Samplings
by equidistant divisions along the road length of the excitation by the road
profile of a specified spectral density generated by a computer showed a
normal distribution. Investigations aimed at determining the stop lengths
that under the described circumstances permit to consider input (exclusively
the excitation by the road profile) and output of the vibrating system of a
vehicle as an approximately normal processes,

1. Digital simulation analysis of vibrations

The model is seen in Fig. 1. The vibration process of local transit buses
following from their special mode of operation has been examined earlier [5].
For model parameter values see [5]. The program written in ALGOL
language for a digital computer then available has since much been developed.

@ =
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In the actual study, for the normality analysis of output signals of the
vibrating system, numerical determination of empirical distribution functions
was indispensable.

i

Actually, eomputer eutputs of the trapezium diagram of travel invariably

indicated acceleration values in 1 {m/s)®, and deceleration values in 2 (m/s?).
Stop distances varied from L == 400 (m) 1o 1600 (m), with 4L = 2060 (m)
increments.
In simulation runs, time interval for the numerical integration was

chosen as At = 0.02 {(s).

2. Analysis of the input normality
Road excitation was simulated in a digital computer as decribed in [5]
and [6]. Spectral density funec of excitation is identical with that of real,

measured road profiles.

In our tests, the bus was driven on asphalt pavement.

One method of normality analysis is the graphic oue, applied by us in
preliminary examinations. Empir ical distribution function or road excitation
has been plotted on Gaussian paper (Fig. 2). N/m, o is known to be the distri-
bution function of a normal distribution of expected value m and standard
deviation ¢, for an arbitrary m and ¢, represented by a straight line on Gaussian
paper. Distribution function of road excitation samples taken at intervals of
0.02 (s) for a constant travel speed V' == 50 (km/k) — plotted in smooth line
— is rather close to this straight line.

Distribution {unction plotted in dash line in Fig. 2 referring to road
»xeitations sampled at intervals 0.02 (s) for the shortest theoretical trapeziodal
travel diagram perspieunously deviates from the straight line.

In this case, with varying speed along the road length, the spacing of
sampling spots varies. At the start of the vehicle, road excitations were densely
sampled, followed by increasing sample spacings, finally, at constant speed,
samplings became equidistant. Upon braking, sampling spots density towards
the stop.

In the case of a fixed, single trapezoidal speed vs. time travel diagram,
this phenomenon biasses the input statistics. Normality is offset by too close
start and stop peints. Estimaied fitting test result of normality versus stop
length L are seen in Fig. 3. Now, only curve “g” referring to the input (road
excitation) normality examination will be con=1deled

Normality has been checked by x® test. Accelerations ¢,, decelerations
a, and maximum speed parameters Vmax of the trapezoidal travel diagram have
throughout been recorded: a; = 1 [m/s?], a, == 2[m/s?], V.. = 50 [km/h].
Thereafter road excitation samples belonging to trapezoidal travel diagrams
for different stop lengths L have been determined. Samples were applied to
calculate ¥? values needed for normality examination.
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Vertical axis of Fig. 4 shows probability percentages p determined from
the % table belonging to our calculation result, permitting to draw conclusions
on our hypothesis of normality. As expected, with increasing stop lengths,
probability of the normality hypothesis to become true increases. Accepting
the level p = 709, road excitation. can be stated to be of normal distribution
for a stop length of 800 m.

Throughout the examinations, stationarity and ergodicity are assumed,
this is why in connection with the examination of a finite number of processes
can be spoken of, that is, all other realizations can be concluded on [7].

The samples contained invariably more than 800 elements, at 30 degrees
of freedom en view of the high number of sample elements, the hypothesis
was accepted over p = T0(%,).
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3. Output normality examination

If the vibrating system really has only the road excitation as iuput,
and the system itself is linear, then introductory statements 3 and 4 are valid.
Though, concrete statistical tests have led to realizations of normalities different
from that of the input as outputs. In the actual case, in addition to the road
profile excitation, the vehicle is also excited by the speed variation along the
travel direction. Hence, this phenomenon entrains the superposition of so-
called nodding vibrations onto vibrations due to road excitation, another
phenomenon justifying output normality examination.

The preliminary normality test for vibration acceleration of the car

body is shown in diagram 3 plotted on Gaussian paper. Z, and Z, ave vertical
1

vibrational accelerations above the fore and aft axles, respectively. Smooth

and dash lines in diagram 3 refer to vibration acceleration distribution functions
for a constant speed v == 50 km/h and for the shortest theoretical trapezoidal
travel diagram, respectively, plotted on Gaussian paper.

Preliminary examinations unambiguously demonstrated the output nor-
mality hypothesis to hold for even speeds. while it is to be discarded for
short stop lengths of a few hundred m.

Stop length dependent normality examination results of some output
displays checked by the y? test have been plotted in diagram 4.

Also in this case, the vehicle was driven according to the presented
theoretical trapezoidal travel diagram.

Z, — Z,, and Z, — Z, indicate y? test resuits for the relative displace-
ments of the car body and the fore and aft axle, respectively. This test is of

importance for the Suépf”bl spring stress analysis.

With increasing stop lengths, normality probabilities of output displays

are seen to increase differently.
Again, it can be stated that normality can be spoken of even for idealized
travel diagrams, for stop lengths of 400 to 1000 m.

Conclusions

1. Statistic examinations of normality demonstrated in case of theoretical
trapezoidal travel diagrams the input of vehiele vibrating systems
(road excitation) not to be normal any more for L < 800 m, because
of the uneven sampling.

2. Considering a single theoretical travel diagram, the output itself is
other than normal for L <7 400 m.

3. Diagram 4 informs on the access to normality, that can already be

assumed for stop lengths L = 400 to 1000 m.
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4. The main goal of our investigations was to determine an upper bound
of stop lengths in the matte of normality. In real travel diagrams also
accelerations, decelerations and maximum speeds vary, hence they
can be considered as random variables.

Thus, the central Hmit distribution may be assumed to prevail in e.g.

a real travel diagram referring to several stop lengths of 400 m. Accordingly,
a joint statistics involving several stop lengths of 400 m is likely to be of a
stronger normality than the result of our investigation on a single, idealized
travel diagram. Of course, exact confirmation of this assumption requires to
perform further examinations.

Summary

The Gaussian process character of stochastic inputl and output is a question of impor-
tance from several aspects of the dynamic design of vehicle structures. This hypothesis is true
for the stochastic input (road excitation) of vehicles traveling at uniform speed. Vibration
systems exhibiting a Gaussian input have also a Gaussian process at output.

Over road lengths between two stops in urban traffie, processes of acceleration at
start and of deceleration before stopping bias the Gaussian process character of input and
output, Tests made with increasing stop lengths aimed at finding the stop length where input
and output of the bus vibrating system can again be considered as Gaussian processes.
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