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Introduction

Statically indeterminate structures can only be designed by iteration,
sinee determination of structural sizes requires the knowledge of siresses,
depending. in turn, on cross-scctional data of structural members, Preliminary
design is, therefore, advisably made as an approximation. In this stage, a simple
mathematical model is recommended, pointing out essential features of the
examined phenomenon of structure.

One of the most frequent models of utility vehicle structures is the
lattice. Lattices suit modelling e.g. vehicle frames, autchbus floor frames,
or in certain cases ¢ven the complete vehicle can bhe considered as a lattice.

Several. exact and approximate, methods have been developed for the
calculation of lattices, based either on the force or the displacement method [1].

Design methods have been applied for the analysis of stresses first in
bridges, later also in vehicles [2].

In the following, analysis of a lattice with four longitudinal heams (e.g.
a vehicle frame) will be presented, applying a mathematical method offering
a fast approximation of stresses to ease preliminary decisions and to evaluate
the effect of necessary further modifications.

The problem will be solved by the force method, taking, in general,
internal work due to bending alone into consideration.

1. Development of the model

Vehicle structures are mostly symmetric. Bus bodies have, however,
no symmetry axis in the striet sense of the word. A strict symmetry is offset,
in addition to the asymmetry due to minor, negligible details, bv the one side
door cuts (Fig. 1). The stress distribution in a structure of disturbed symmetry
may much differ from that in symmetric structures. imposing them to be
analysed, though direct determination in asymmetric structures is rather
cumbersome.
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Vehicle structure in Fig. 1 can also be modelled as a lattice (Fig. 2).
The lattice model is assumed to consist of members all able to absorb bending
stresses and intersecting members to be joined by hinges. As a further simpl-
fication, in the model the longitudinal beams are considered to be of constant
stiffness throughout, and cross-beams to be of identical stiffness (regular
lattice). Again, symmetry about the longitudinal axis is assumed.

The possibility of accessory comsideration of asymmetry — e.g. door
cuts — initially neglected to simplify conditions will be detailed later.

No difficulties arise from the determination of lattice member stiffness
for both inner longitudinal beams and cross-beams, especially for framed
vehicles. In autobuses and railway coaches sidewall stiffness is also affected
by the window field. Rather than to abruptly increase the number of unknowns,
its accessory effect is advisably assessed by approximation. The equivalent
sidewall stiffness yields, at the same time, stiffness of the outer longitudinal
beam of the lattice.

Determination of the equivalent sidewall stiffness advisably starts from
the identify of displacements between defined points of the real structure
and the substituting model. Remind, however, that the equivalent stiffness
depends, in addition to the structure design, also on the load distribution.
In the subsequent considerations, the load distribution will be assumed —
according to earlier observations — as close to the real one as possible.

The grid structure under the window of the real sidewall in Fig. 3 can be
considered as a deep-web beam where shear is absorbed by grid bars, and
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bending by flange bars. Omitting the deformation caused by shear forces
(grid bar length changes). inertia J; of the deep-web heam can be determined,
permitting to replace the real sidewall by the simplified model in Fig. 4 for
further calculations.

Assuming the top flange and the window post to be hinged. the model
is more elastic than the real structure. The model can be refined by the “modi-
fied Fabry method™ [3], taking also the hending stiffness of the top flange
into consideration (reduced window post stiffness). In the following, inertia
of the window post will be assumed to involve this correction.

The sidewall in Fig. 4 is replaced in calculations by a single beam, of
an inertia depending on the window post inertia Js. the parapet inertia J1s
and the cross-sectional are A of the top flange.

Let us pick out c.g. a two-field part of the structure (Fig. 5). Calculation
of the equivalent inertia starts from the identity between deflections of defined
points B. In either case. the structure is loaded by the same force Fy. In
caleulating the internal works let us take bending, and for the top flange,
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the normal stresses into consideration. The equivalent inertia obviously
depends on the number of involved frames. too.

For the sidewall construction actually applied (in buses) the order of
magnitude is closely approximated by:

| -

where 7 — number of fields.
n 13 . .
[?] — highest integer number comprised in n/2:
¢ — ecompuied value (~-0.053).

Under different stiffness conditions. of course. also the ¢ value differs.
Significant differences may arise for railway coaches where window posts are
siiffer than are those of buses.

In practice, J* == (1.1 to 1.3) J,. Also the effect of door cuts to affect
the stiffness has to be examined. In these places. bending and shear stiffnesses
are much modified. Also here, the equivalent inertia can be deduced from the
identity of displacements.

Provided no high shear forces arise in the vieinity of door cuts of the
real structure, neither shear in the substituting model will be reckoned with
{Fig. 6.) This omission is valid to mid-car-body doors.

With respect to actual stiffness conditions:

J*F A2 (0.15 — 0.2) J*.

In the case of high shear forces also the effect of shear is to he involved in
calculating the displacements, as seen on the substituting model in Fig. 7.

J=00
J* ( | j=
P
— =
O}
B
P
J*F 8 Jxx: J*
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The equivalent inertia becomes:
JEEE - (0.02 — 0.03) J*.

a substitution valid for car-body-end doors.

2. Regular lattice with stiff cross-beams

Let us consider the moment developing in the outer longitudinal beam
(sidewall) at cuts above the cross-beams due to unknown internal forces in
the regular lattice with stiff cross-beams as seen in Fig. 8.

The compatibility equation is of the form

DX —d =0 (1)
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where
D matrix of unit factors;
X matrix of unknowns;
d matrix of load factors.

A possible means to determine the unknown internal moments by produe-
ing the inverse of I is:

X=—D"1d (2)
The stresses of lattice are obtained according to the principle of super-
position
M= M, — Y X;m; (3)
where

M, basic structure stress due to outer loads;
X, internal moment at the i-th cut;
m; bending stress due to unit moment pair acting at the i-th cut.

The usual production of the inverse is, however, rather cumbersome,
and unreliable because of the superposition of rounding-off errors. So the
coefficient matrix is decomposed into matrices with inverses producible in
closed form.

For the structure in Fig. 8, the coefficient matrix

D=1 uypo0
(nsm) i g6 pB
50wy o
bR vudf
50wy pé
58 v%d B
Boxzy o
33y adp

where
n number of redundancies;
E modulus of elasticity;
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Taking the relationship between unit factors into consideration:

D=[4846 g 6 =[p o] ®]| 41
46 48 o P 5 B 141
B A48 456 B 4 141
5 B4648 b P 141
B 0 4B 48 p b :
5 4648 6 P
B 04p 468 6
5 B4 48 5 8

'

= K@L

(4)

According to the theorem for the inverse of direet matrix products:

D1 = (KQL)~! = K-1gL-.

(5)

Rather than to directly invert mairix D direct product of two easily

produced inverses has to be applied. L is a special continuant matrix, with

an inverse producible in closed form:

L= = [ry)

and
{(__ )i+ sh (@) sh{(n +1 — j)O] i
; sh @ sh(n=10]
TG0 Al 0e)
l\ sh @ sh [(n — 1)O] =
where

O =1In(2 L V3).
and the inverse of matrix K:
1 8 —9
[* d 3}

K-1=
32— &

3. Regular lattice with elastic cross-beams

(6)

7

Coefficient matrix of the compatibility equation will keep its band
structure even for elastic cross-beams, however, at an increased bandwidth:
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where

3J1E [‘(;‘J (¢ + b)

, 1 ‘ a]
iy = e =
6J"E |1
Elements of matrix D have been determined from the model in Fig. 9.
The coefficient matrix being a hypermatrix of secondary cyclic blocks,
that is, the modal matrix is the same for anv block, namely the involutory

matrix
i1 1 :
211 —1
similarity (actually, involutory) transformation by matrix T in every block
leads to hyvpermatrix of secondary diagonal matrices, equivalent to the decom-
position of the system into two independent part-systems.

Hence:
C(T2E)D(IR E)*C* =
R | = Ki®K;
Bl ‘41 B1 CI
Cl Bl 44.1 131 Cl
@ B BG (9)
’AZ BQ C‘Z
Bz “42 BQ CQ
' C, B, 4, B, C,
Cz B‘2 _42 B_2 C2

where Cis a permuting matrix rearranging elements of a hypermatrix of secon-
dary blocks to produce a hypermatrix partitioned to four blocks.
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W6 Ay oy — 41
iy —4 6 =4y, oy —4 1
1 w, —4 6 +4n, oy —4 1
] v -1

Introducing
and
vields:
K| =C,
and

a6+ 4w, o — 4
o — 4
1 e — 4

1

1

6+ 4y, puy,— 4 1

6 = du, p,— 4 1

e — & 6 -+ duy py —

6 — 4y oy — 4

4

1

1

=1
[&]]

(11

(13)

The obtained matrices K; and K; can only be decomposed in form

K’ = N(M, M, + M,)

(14)

Although inverses of continuant matrices M, and M, are known, but
matrix M, leads to a further two-diacid modification.
It is recognized to obtain — by modifying the model — a matrix struc-
ture that can be decomposed into the product of two matrices of known

inverses.
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(5}

Let the original structure be completed by sections of elements of
infinite stiffness according to Fig. 10 on the left and the right side.

Transformation according to the above of the compatibility equation
of the resulting model vields:

(K, DK )u=f (15)
where

K.=C [5+4u; p; —4 1
w—4 6 +4du;, py—4 1
1 uy— 4 6-dp, opp—4 1

i

Ly —d4 64y p, —4
1 Uy — 4 5+ dp,

(16)

Ky=0Co[ 35— 4y, s —+ 1 _I
g — 1 6 —dp, us—4 1
1 thy — 4 0 — dpy gy — 4

oy

1oy — 4 6 - du, po — 4

s — 4 5 =+ 4du,

poed T

(a7)
Thus, the original compatibility equation is decomposed into twoe inde-

pendent (although slightly increased) matrix equations,

S, - e e = -

up = | fo
, ust
Ky

—i i 5
i ) Yig fis

Uzg fa0

C By

_L_,éz

R I L Y | | f2s

Matrices being of identical buili-up, both equations are similarly solved,
therefore, solution of a single matrix equation will be presented.
Let us consider equation

K, u, =, (19)

solved in the form:

u, = Ki‘l fl (20)
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Since in developing the new model internal moments have been assumed
also where they were zero, in solving the equation system first, the f;, and f;
values have to be determined under conditions

=0
(21
uy, = 0
Introducing notations
— 4y — Vu? — 244,
=) = [, o
and
4y Vi 2 ‘
g f \U' 4:) :; ‘“‘ U' (23!
as well as matrices
P=[pl ] Q=7¢q1l -
1pl 1g1l
1pl g1l
1pl l1gl
1pl lg¢gl
1p1l 1g1
(24) (25)
the coefficient matrix becomes:
K, =CPQ (26;
and its inverse:
K;lz—l——Q—lP"l. (27)
C

1

Inverse of matrices Q and P can be determined in closed form by means
of second-kind Tchebyshev polynomials of degree n [4].
4. Relationship between inverses of coefficient matrices applied in the analvsis

of regular lattices with stiff and elastic cross-beams

Involutory transformation of the coefficient matrix of the regular lattice
with elastic cross-beam, and arranging by a permuting matrix results in a
hypermatrix partitioned into four blocks. Hypermatrices in the main diagonal
are of similar structure, so that the deduction leading to the relationship above
will only be presented for one of them.
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After transformation and permutation (Eq. 16):
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K,=C, [5-+4u; py—4 1 N
g — 4 6+ 4duy 1y — 4
1 Uy — 4 6——4;[1 uy— 41
1 ,— 4 6=t oy — 41
gy, — 46— 4y, p,— 4
B 1 wy— 4 5 =4y |
Be
A= 2 -1 ~
-1 2 -1
1 2
1 2 _1 (28)
Hence
- : e ol 1
K = C [i1(6E — A) -+ A*] = C]M[ [6E — A - — A2 =
Hy
(29)
= C,1,(6E — A) (E L1 (6E — A)-1 AQ} .
L 1y
and its inverse:
. 1 1. Y ; o
K7t E 4+ —(6E — A)-*A%] (6E — A)-? (30)
Cyuy My

In producing K%, the sccond factor in the right-hand side of Eq. (30) can be
series expanded, and since according to practical experience. it suffices to
reckon with the first two terms of series expansion, it is:
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hence

Ki! ~—t (6E — A)-1— 10

18y 1 M1

[(6E — A)-T A} (32)

The first term yields the inverse of the coefficient matrix of the lattice
with an infinitely stiff cross-beam, while the second term is proportional to
the effect of elastic cross-heams to modify the stress distribution.

This inverse in rather simple to produce namely also (6E — A)~-! can
be produced in closed form.

5. Reckoning with the stiffness change of structural members in inverting the
coefficient matrix of the compatibility equation

Be the coefficient matrix of the compatibility equation produced in

the form
D = B*RB (33)

where

B matrix of stresses from unit load pairs:

R flexibility matrix of the structure.

Change of the stiffness of the i-th member of the structure alters the
block (i, i) of the original flexibility matrix. Considering the modified flexi-
bility matrix as sum of two matrices:

R,=R -+ Ry (34)
the coefficient matrix becomes:
D,=B*R,B=B*R+-R,)B=B*RB-B*R, B=D - M (35)
Let us consider a minimum diadic decomposition of M:
M= (B*R,, B. (36)
Thus, the inverse of the modified coefficient matrix:
Dif=D-+-M)"1=D"!—D'B*R,(E—+ BD-'B*R,)-1BD-1 (37)
Diagonal hypermatrix R, differing from the zero matrix by a single
block. it is sufficient to calculate with a minor matrix each of matrices B, B*,

R,,. i.e. matrices B,. Bj. R, .
Possible transformations lead to the general formula:
D3t =D~' — (B, D))" (Ryf,, — B, D-1B;)~'B, D! (38)
to be further simplified by taking pecularities of the model into consideration.
The further simplification is possible by the development of stresses due to

unit equilibrium moments acting at cut joints only in a defined range of,
rather than over the complete, structure.
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Let us consider the modification of the regular lattice with stiff cross-
beams.

Fig. 11 shows only unit loads X, and X, , to produce stresses in the
section to be modified. Hence:

X Xir
B,=}{....1 .0...¢. (39)
.0 1

-z

4

4/////////////J

XA XG Xa
Fig. 11
Denoting %m a minor matrix of B, :
01
and be
1 -1
Dot =1 Dii ; _ L2....n 1 (41)
D1y, J
and
Dity s [ Dito k42 ‘

minor matrices of D1,

Determination of the inverse flexibility matrix Ry, starts from connect-
ing another beam of inertia J, to the original beam of inertia J. Then, assuming
the stress to vary at most linearly along the tested section,

L 2J+EJYEJ[ 2 —1 _
RMm" I J;;Ii—']. 9 . (43)

Thereby the inverse of the modified coefficient matrix becomes:

3 =D-t — (D;V)* (R}, — ﬁ—l)-lD;_[l (44)

MO

where the inverse of a single (2 x 2) matrix has to be calculated, other matrices
being at disposal.
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Of course, the general modification formula deduced from purely mathe-
matical considerations equals the relationship by Argyris and Kelsey [5],
relying on thermal displacements, as well as the modification method deduced
by Nandori from the general coupling procedure [6, 7].

The effect of stiffness change — due to stresses indicated for longitudinal
beams alone — have been plotted in Figs 12, 13, 14. Throughout the calcula-
tions member stiffnesses — except the modified parts — have been considered
as constant.

Summary

The presented calculation method lends itself to the preliminary, approximate stress
analysis of lattices with four principal beams, stiff or elastic cross-beams. exempt from tor-
sion. The solution methods based on the force method permit to produce coefficient matrix
inverses in closed form, and to take various structural modifications into consideration by
inverting only small (2 X 2) new matrices.

Inverses possible in closed form reduce numerical errors resulting from computer
inversions, permitting to solve the problem by small-capacity desk computers or even mini-
computers,
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