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For designing heat exchange devices operating under normal conditions.
the designer may choose between reliable enginecring methods. offering,
Lowever, few data needed for calculating the temperature distribution in parts
subjected to high mechanical and thermal stresses (as e.g. the rotor of electric
revolving machines or blades of a gas turhine). Though. the aspects of utmost
exploitation of insulating and structural materials and of safety can only be
agreed in exact knowledge of place and extent of temperature peaks.

The primary condition for carrying out such calculations is information
about the local values of the heat transfer coefficient.

The heat transfer process being in close interaction with the structure
of the flow developing in the duct, the phenomenon is too complex to permit
theoretical deduction of sufficiently exact information. All these point to the
importance of model tests for determining the local heat transfer as a function
of systematically varying hydrodynamic characteristies.

Some methological problems of the measurements will be analyzed.
with special regard to conditions to be satisfied, permitting an important
simplification of processing data. measured in a double-walled test section
rather convenient in tests in revolving systems. Omitting consrtuction details,
the test section is discussed only to an extent necessary for this purpose.

According to a definition befitting engineering calculations — either
dimensioning or control — the local heat transfer coefficient «{(¢: z) is the
ratio of the heat flow density leaving the wall surface moistened by the flow-
ing medium at a given point to the difference between the wall temperature
at the same point and the characteristic medium temperature (see Eq. (6)).

The heated part — the test section — of the experimental channel
serving for the measuring o(g:z) is a double-walled tube (See Fig 1). The
thin-walled lining — or insert tube — is made of stainless steel of a good
thermal conductivity, and of a high strength. to act as load bearing structure
of the test section. In a revolving system it can absorb also the load imposed
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Fig. 1

by the centrifugal foree. The heat flux iz measured by the casing around the
insert tube. To obtain an adequate accuracy, it is made from a synthetic
material of poor thermal conductivity (e.g. Teflon) with a relatively large wall
thickness. The thermocouples are placed on the internal and the external
surfaces of the casing. To avoid technical difficulties, the internal thermocouples
ave in fact placed on the external surface of the insert tube containg the casing.
Temperature data measured by them are uscd in forming both the heat flux
and the temperature development in the channel wall. Thermal flux is gener-
ated by eleetric heating surrounding the casing. Temperature T, of the coolant
entering the test section is measured by the thermocouple at the centerline
channel. Measurement of the mass flow m outside the test section can be realized
bv anv suitable method.

The local heat transfer coefficient as a test result bhecomes aceessible
only after having processed the primary measured data dircctly recorded by
the measuring converters (metering orifice, thermometers ete.). Methods
strictly pursuing the process are in general extremely labour-consuming.

&

Namely the heat flux entering into the fluid has to be computed by forming
the gradient of the tube wall temperatare ficld on the surface bounding the
flow, conditioned. in turn, by the previous solution of the differential equation
describing the temperature field. taking the houndary conditions provided by
the measurement data into consideration.

Making use of possibilities offered by the cxprrimental deviee to get
suitable simplifying assumptions, the work of data processing can he reason-
ably limited without impairing the expected ¢ xactness of the results.

In the actual case of chief problem is due to that in the test section
the flow is not axisymmetrical resulting in a three-dimensional heat flow in
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the tube wall. Thus the temperature field of the wall in steady-state thermal
condition is deseribed in the cylindrical coordinate system (r;¢:z) by the La-
placian differential equation
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to be solved under the full effect of the mentioned difficulties. The data proces-
sing would be much simplified by the approximation that the heat flux in the
wall is one-dimensional with only radial components. This approximation can
be aceepted if the first term of the Laplacian equation much exceeds the
second and third terms. Let us examine the conditions of the above.

As coneerns the assessment of the orders of magnitude of the equation
terms:

— &{A} is the svmbol of the order of a quantity .
— By order of the derivative of a variable the order of the change ratio is

[47]

understood and its value — in lack of an analyvtical relationship — i
approximated with the quotient of the supposed change by the range
change.

-- By order of product, the product of the order of the factors is understood.

For quite a rough approximation of the order of the ratio of the first
to third terms of the Laplace equation, the radial temperature drop in the
tube wall 21T and the channel radius r, are chosen as units, Since the tempera-
ture drop AT occurs in the wall of thickness o and the order of variable r
isry. introducing the symbol A4 = o7, the order of the first term is estimated at:
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(The orders of the coefficients are separately indicated in parentheses.)

The order of the third term is obtained considering that the change of
the wall temperature along the channel length is considerable only in the
thermal entrance length. Many researchers have found this length to be 10
to 15 times the tube diameter or more. For the estimation the most unfavour-
able instance is considered, where the axial temperature change T. reaches
the order of the radial temperature drop halfwav on the thermal entrance
length rising section i.e. a length of z == (10 <+ 15) r,. Expressing variable
: and change AT. to scales of r, and AT, respectively, even in the most un-
favourable instance the order of the third term of the Laplace equation is
cstimated
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Thus, rough calculations show for r, = 5 - 103 m the first term of the
Laplace equation to be by four orders greater than the third one in an insert
tube of wall thickness §; = 0.25 - 102 m (J = 1/20) and about for hundred
times that in the casing of wall thickness §, = 2,5 - 103 m.

To estimate the relation between orders of the first and second terms,
a less formal consideration is applied than the previous one, reflecting better
the physical principle.

Tts result will be expressed in a form expliciting the condition to be
satisfied by the measuring data to omit the effect of temperature change
along the circumference in the Laplace equation.

The uneven temperature distribution with respect to the polar angle
in any cross section is described by the difference AT, between the highest
and least local value along the circumference with a radius r,. If the flosw
structure in the tube cross section is symmetrical measured about any dia-
meter, this difference is expected to develop on half the channel circumference
(say in the angle range 0 < ¢ < @) thus the second term in the Laplace
equation is of the order:

o
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For estimating the first term, the Fourier law can be used. expressing the
relationship between the derivative 07 0r and the radial heat flux. Obviously.
the order of the radial heat flux equals the mean value of the heat flux density
passing from the tube wall across the casing surface of radius r, to the flow.
Tts value is obtained from product = - AT, where o is the mean heat transfer
coefficient, AT, the difference between the average wall surface temperature
and the characteristic temperature of the flow, the so-called temperature
step. Thus, denoting the heat conductivity of the material of the insert tube
by 4

1w

;. the order of the first term may be written as
o ;’]To) 1 adT,
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The estimation is valid also for the temperature field of the casing if
8, and 7., are replaced by the casing wall thickness , and its heat conductiv-
ity ... resp., as the radial heat flux is also of order «AT in the casing wall.
Obviously the importance of the second term of Laplace equation becomes
insignificant compared to the first term if inequality

AT, 1 2T,
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exists. (For the casing i = 2, for the insert tube i = 1.) After some transforma-
tion, finally the condition

IT, 1) @ Bi @)
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is obtained. Depending on whether the condition has to he referred to the
temperature field of the insert tube or of the casing. coefficient 4 has to be
taken as:
A == 1 (for the insert tube),
Dy g

A4 == . 2 (for the casing).
')2 /‘u"?.

Coetficient Bi is the well-known non-dimensional characteristic of heat

flow problems, the Biot number. defined as
Bi = 21 (3)
e

{its physical meaning will be considered later).

Nonuniformity AT, has to satisfy condition (2) to neglect the wall
temperature change along the circumference.

For an insert tube made of stainless steel (/. ; = 20 W/mK) and casing
of Tetlon (7,, = 0.23 W mK), in case of a mean value of z = 200 W m’K
for the thermal conduectivity (Bi =: 0.0025), even a nonuniformity AT, AT, =
= 0,1 along the circumference vields that the right-hand side of condition (2)
is about 110 times the left-hand side for the insert tube and about 950 times
for the casing. It is easy to understand that these numbers indicate at the
same time the relative importance of the first term of the Laplace equation
compared to the second term.

Remembering the ratio of estimated orders of the first to the third
term. the order of magnitude analyses lead to the conclusion that

the heat flux in the test section wall is approximately radial and the tempera-

ture field is described by the ordinary differential equation

— 0. ()

Let us consider now particulars of the data processing method. In the
test section the thermocouples placed on the external surface (of radius r,)
and the internal surface (of radius r;) of the casing are fitting tightly the insert
tube measuring the temperature sets T, = T(r,; ¢;z) and T, = T(ry: ¢; 5),
respectively. These data cannot be directly used but for computing the heat
flux density in the casing. Specifying the two sets — two numerical functions
— as boundary conditions, the temperature field in the casing is obtained by
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solving the differential equation (4). from which the heat flux can be expressed
in terms of Fourier’s heat conduectivity law. Omitting the details, in final
account the value of the heat flux passing from the casing to the insert tube is:
T(ryig:s) — T(ryig:z)
. 2: 4=~ 19 = =
griig:3) = Zpo - (5)
r,
ryln—
ry

The interpretation of the local heat transfer coefficient involves two
characteristics based on temperature distribution T(r,:¢:z) at the flow-
moistened surface of radius ry. (But T(r,: ¢; z) will not be measured. because
of technical reasons.) Namely in the interpretation according to the generally
applied definition

. 7(ro: .
w(g: z) = — A (6)
T(ro:q:z

beside the reference temperature difference 1T, = T(r,:q:3) — T, also the

heat flux )
; . Tryigesy — Tlryiorz _
9(7'0; 7: :) = ( AR ( v i) (x)

roln (ry/r)

passing to the flow across the moistened — reference surface involves the

smface temperature. However, this definition is to be retained, therefore. the
measuring data processing formulae have to be developed ina way not te con-
tain the temperature T(r,; ¢; z).

Flux q(ry; ¢ 5) is easy reduce to flux ¢(r;: ¢: z) containing only measuring
data. Namely, since according to approximation (4) the local heat flux in the
insert tube wall is inversely proportional to radius r and since in crossing the
casingiinsert tube boundary surface the radial component of the heat flux
density vectors remains continuous, the surface heat flux hecomes:

. . T(re:g: oz T @tz A
q(ro: ¢:2) = Zuo e g2 2 — 110, L (8)

roln (7'2~r1)

To eliminate the temperature step T, a fictive heat transfer coefficient
u(p; 2) is defined, the reference surface of which is the moistened surface in
accordance with «(p; z), but its reference temperature difference is the complet
temperature step AT, = T(r;1¢:15) — T,

Thus, be

Zm((’[’; :) = M . (9)
T(rig; =) —T;

Now it is shown that in data processing. «{g;z) can be approximated

o

o,(@: z), indicating also the resultant systematic error.
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Expressing from (9), (6) and (7) the complete temperature step AT,
the temperature step AT, as well as the temperature drop T(r, ¢:z) —
— T(r,: @3 =) across the insert tube wall, respectively, and taking into account
that the complete temperature step is the sum of both latter, then obviously:

1+%

L1 - I(,ln (rore) T

r,ln
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Since with the insert tube dimensions §,r; = 0,05 < 1, the logarithmic fune-
tion can be approximated with its first-order Taylor polynomial. With eqn.
(3) thus becomes

2 = 2,(1 - Bi). (10)

The error from approximating the actual heat transfer coefficient by a
fictive #,, value referred to the complete temperature step easy to measure,
is seen to be equal to the Biot number, ie. in average some permille as seen
above. This low value of the Biot number indicates the very poor resistance
of the insert tube wall to the heat flow passing from the casing to the flowing
coolant, whereas the resistance of the convective heat transfer on the moistened
surface is prevalent. This state of things further reduces the importance of
the error committed by replacing Laplace equation (1) for the insert tube by
Eq. (4) — as an exact computation would entrain but a slight change in the
earlier estimated value.

After having substituted temperature T(r,: ¢ : z) of the moistened surface
in every respect let us present the formula for computing the local heat transfer
factor from measuring data:

s Tlrasgsz) — Tlr:q:3)
T(riig:z) — T, '

t

(g z) = (11)

r,ln I
r

Neglecting the Biot number compared to unity the formula was written
by means of (8). (9) and (10).

Remind that the concept of the heat transfer coefficient calculated
according to {11) means quotient of the heat flux passing to the coolant flow
by the temperature T, of the flow entering the heated section or the mixed
mean temperature T, (z). The first one is the actual temperature uniformly
distributed in cross section z = 0, the second being the fictive temperature
changing from cross section to cross section along the channel length. defined
in terms of the enthalpy balance written for the part of the heated section
up to the actual cross section.

z 2=

me,[T(z) — To] = 19 S S q(ro: g3 7) dp d=.
a0
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(m is the mass flow, and ¢, its isobaric specific heat taken to be constant.)
Substituting the integrand from (8),in data processing the mixed mean temper-

ature of the fluid can be determined from:

e [ ,
T,(:) =Ty + —— {T(ros g1 5) — T(ry; ¢ 5)] dy da. (12)
e, In =2
rl ¢ e

In conclusion: for the experimental determination of local heat transfer
coefficient «(q;z) defined by Eq. (6) the following data have to be directly
measured:

— temperature distribution T(r,; ¢; z) on the external casing surface,

— temperature distribution T(r;:¢:z) on the internal casing surface

fitting to the insert tube,

— temperature T'; of the coolant before entering the heated test section,

— mass flow m of the coolant in the test section.

The value of (g z) is computed from these data by means of Eq. (11).
Characteristic temperature T, is replaced either by T, or by T (z) determined
according to (12).

Sumimary

The laboriousness of the experimental determination of the local heat transter coeffi-
cient is substantially reduced by simplifying the evaluation method. The steady-state tem-
perature field of annular tube walls is obtained from the Laplace differential equation. For
an other than constant convective heat transfer coefficient along the tube circumference,
the temperature field is three-dimensional. By analyzing the order of magnitude of the terms
in the Laplace equation referred to the cylindrical coordinate system (r;¢; z) the conditions
to be satisfied for an adequate approximation of the wall heat flux density using the one-
dimensional Laplace equation have been established. A simple approximate method has
been presented for processing temperature data registered in a double-walled test section,
at a reasonable restriction of evaluation work.
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