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1. As earlier pointed out [1] the flow within a vertex chamber is best
characterized by the Navier—Stokes equations.

The vortex chamber actually constitutes a blockpulley (shell) where the
primary fluid arrives tangentially and becomes mixed parallel to the shell
axis with the secondary fluid sucked in by the arising vacuum, subsequently
the mixture leaves at the flange of the circular opening in the centre of the
blockpulley vortex chamber. In this paper the flow relations enabling the
determination of the mixing ratio are investigated.

The Navier—Stokes equations may become basically simplified if certain
rational approximations are used. In this paper the problems are discussed
which arise if the variation of the viscosity according to position is neglected.

2. In a previous publication [1] a method has been developed to deter-
mine the peripheral velocity. According to this model the flow within the vortex
has a cylindrical symmetry. consequently the equations are presented in a
cvlindrical ‘co-ordinate system, whose position with respect to the chamber
and the individual velocity components is depicted in Fig. 1.

According to the Newtonian axiom the conservation of the momentum
of the fluid is expressed by the following equation:
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As it is known [3] the left side term of the equation may be decomposed into

two parts, the local and the convective acceleration
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The right side of the equation, on the other hand, may be reformulated
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== f(D) represents a material equation. For a Newtonian flow one

S

where

has [2]
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Consequently by using (2) and (3) Eq. (1) can be rewritten to express a uni-
versal law of the conservation of momentum valid also for the generalized

fluids:
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In the case under discussion. however. the flow mav be regarded as time
constant. L.
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Further on one knows from experiment and observation that the phenomenon
has a cvlindrical symmetry. in addition
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Bv neglecting the gravitational force the following component-equations are
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obtained from the Navier-—Stokes equation (3):
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Of course, in this equation system p = pv represents the dynamical and »
the kinetical viscosity. In our case the viscosity consists of two components,
the Newtonian and the turbulent viscosity

I L (12)

As a rule also in this case the first term is with several orders of magnitude
smaller than the turbulent viscosity, for this reason one may write

=S (13)

According to our investigations the shear force plays a considerably more
important role in the peripheral than in the other direction. consequently
the following assumption. i.e. approximation mav be used
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As a consequence of Eq. (10) relations suitable for the quantitative analvsis
of the peripheral velocities are obtained. Of coures. also the continuity relation
must be taken into account
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In Eq. (10) the term — P refers to the fact that the viscosity is not a
or r

constant quantity. By neglecting this term. i.e. by assuming that the viscosity
is in good approximation after all constant. one obtains the well-known equa-
tion describing the laminar flow [3].

Eq. (10) enables the evaluation of the turbulent viscosity from experi-
mental data. If Eq. (10) is mad: dimensionless by relating the length to the
radius of the chamber. and the veloeity at the edge of the echamber to the
peripheral velocity valid for the co-ordinates of the maximal radial direction
one gets the equation

vl = ~L'If"”—E~- L (16)
2 R L
which is for L = I—V-I—R- a first order, linear differential equation. This equation
4y

can be solved if the 7 and W functions are known from measurement.

The solution for an actwval case is demonstrated as an example in Fig. 2
for the case X =13 [1].

The figure contains also the approximation of the previously used broken-
line viscosity distribution. Fig. 3 compares the mixing path-length values as
calculated by Escuidier’s formula with the experimental results.
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The figure shows that Escuidier’s formula yields acceptable approxima-
tions only in the range 0.7 < R — 1.0. The rapid increase of the viscosity in
the range R -7 0.7 is not covered by Escuidier’s treatment. Consequently the

broken line approximation yields more exact results in calculating the peri-
pheral velocity distribution.
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The evaluation of the turbulent viscosity measurements were carried
out by the following method. The figure shows that the viscosity distribution
has a nearly conmstant range, which, however, if extended over the whole
field, does not vield the total velocity distribution especially not at the peri-
pheries.

If the viscosity is considered to be comstant in a narrow, small section
its values may be evaluated from Eq. (16) with the conditions L = constant
and L” = 0. One point from the viscosity distribution with L = constant
and L’ = 0 evaluated this way and described in the previous paper [1] may
be used as an initial value to solve Eq. (16).

Taking into consideration the viscosity values of the above method,
satisfactory results are obtained in calculating the peripheral velocity not only
in a narrow, but also for the whole range.

The actual curved distribution presented in Fig. 1 has been approximated
be a broken line in the interest of an easier manageability. The approximation
deviated only insignificantly in the caleulation of the peripheral velocity.

Summary

The author describes equations of the mixing viscous component for the turbulent
flow within a block pulley (shell) shaped vortex chamber. By rewriting the equations the paper
presents the possibility to calculate the turbulent viscosity from the measurement of the
velocity distribution. Evaluations of an actual example of the velocity distribution. compared
with the results obtained by the distribution values of Escuidier’s formula are presented.
and a broken line method to approximate the turbulent viscosity is proposed.

Notations

=

peripheral velocity
axial velociy

radial velocity

.O. 3 cvlindrical co-ordinates
J dimensionless velocities
turbulent viscosity

—

myll 3 bR ol
s

tensor derivation of the velocity field
generalized velocity vector
force field vector

stress tensor as defined by equation (4)
Nabla operator vector

dimensionless viscosity

dimensionless co-ordinates

stress tensor
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