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1. As earlier pointed out [1] the flow within a ;;ortex ehamher is best 
characterized by the Navier-Stokes equations. 

The vortex chamber actually constitutes a hlockpulley (shell) where the 
primary fluid arrives tangentially and becomE's mixE'd parallel to the shell 
axis with the secondary fluid sucked in by tllE' arising vacuum, subsequently 
the mixturt· leaves at the flange of the circular opening in the centre of the 
hlockpulley vortex chamber. In this paper the flow relations E'nabling the 
determination of the mixing ratio are in;;estigated. 

The N avier- Stokes equations may bE'conl(' basically simplified if certain 
rational approximations are used. In this paper the problems are discussed 
"which arise if the variation of the viseosity according to position is neglected. 

:2. In a pn'",,-ious puhlication [l] a method has been de;;eloped to dett'!'
mine the periphE'ral velocity. According to this model the flow within the ;;ortex 
has a cylindrical symmetry, consequently the equations are presented in a 
cylindrical co-ordinate system, whose position "with respect to the chamber 
and the individual velocity components is depicted in Fig. 1. 

According to the Newtonian axiom the conservation of the momentum 
of the fluid is expressed by the following equation: 
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As it is known [3] the left side term of the equation may be decomposed into 
two parts, the local and the convective acceleration 
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The right side of the equation, on the other hand, may be reformulated 
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where rp feD) repre5't"nts a matf'rial pquation. For a :\ewtonian flow one 

has [2] 

- pE -.- ,u(D 15*). 

Consequently by using (2) and (3) Eq. (1) can be rewritten to express a uni
versal law of the consen'ation of momentum yalid also for the gpneralizec! 

fluids: 
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In the case under discussion. ho,,'ever. the flow may be regarded as time 

constant. i.\'.: 
()c 
at 

o. 

Further on one knows from eXlwrimcnt and obseryation that the phenomenon 
has a cylindrical ",ymmetry. III addition 
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By neglecting the gravitational force the following component-equation5' are 
obtained from the !\" aYler- Stokes eqnation (5): 
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Of course, in this t'quation 8ystem .u = QV represents the dynamical and j' 

the kinetical yi"cosity. In our case the ,-iscosity consists of two component", 
the Ne\\-tonian and the turbulent viscosity 

J! 1'0 (12) 

As a rule also in this case tlw fir:-t term is with several orders of magnitude 
smaller than the turhulent viscosity. for this reason one may write 

(1:3) 

According to our inyestigatiom the 8hpar force plays a considerably more 
important role in th(' peripheral than in the other direction. eonseqtlPntly 
thp foHo'wing aS8umption. i.t>. approximation mav be used 

o and o. (14) 

As a consequence of Eq. (10) relation5 5uitable for the quantitati,'e analysi::; 
of the peripheral velocitie5 arc obtained. Of coure5. a150 the continuity relation 
mU5t he taken into account 
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In Eq. (l()) thp term 
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refer:- to thp fact that tll{' yiscosity is not a 

constant quantity. By Ilt't:l,'cting thi:- t 'fm. i.t,. by assuming that the ,-iscosity 
is in good approximation aft('1" all constant. ont' ohtain:- th" wdl-known equa
tion de5cribing the laminar fIo\\' [:3]. 

Eq. (10) pnabIPs the ('valuation of th(' tnrllUb'nt \'i;;;co;;;ity from experi
mental data. If Eq. (10) is mad,· diIUt'mionlt,s:- by relating the length to the 
radius of tlw chamber. and th,' \'docit)" at tlw pdgp of the chamber to the 

peripheral yelocity valid for tl1<' eo-ordinates of till' maximal radial direction 
onc get" tllt' equation 

L' [ IF' 

which i" for L 

o (16) 

l' 
a first order, linear differential equation. This equation 

W1R1 
can be solved if the V and W- functions an' known from measurement. 

The solution for an actual case is demonstrated as an example in Fig. 2 
for the case X 1 3 [1]. 

The figure contains also the approximation of the preyiously used broken
line viscosity distribution. Fig. 3 compares the mixing path-length ,-alues as 
calculated by E"cuidier'" formula with the experimental results. 
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Fig. 3 

The figure shows that Escuidier's formula yields acceptable approxima
tions only in the rangt' 0.7 /' R /' 1.0. Tht' rapid increase of the viscosity in 
the range R < 0.7 i8 not covered by Escuidier's treatment. Con8equently the 
broken line approximation yields more exact results in calculating the peri
pheral wlocity distribution. 
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The evaluation of the turbulent viscosity measurements were carried 
out by the follov.ing method. The figure shows that the viscosity distrihution 
has a nearly constant range, which, however, if extended over the whole 
field, does not yield the total velocity distrihution especially not at the peri
pheries. 

If the viscosity is considered to be constant in a narrow, small section 
its values may he pvaluatNl from Eq. (16) with the conditions L constant 

and L' = O. One point from the viscosity distrihution with L = constant 
and L" 0 pvaluated this way and dpscribed in the previous paper [1] may 
hp used as an initial value to solv(' Eq. (16). 

Taking into consideration the viscosity values of the above method. 
satisfactory results are ohtained in calculating the peripheral velocity not only 
in a narrow, hut also for the whole range. 

The actual curved distrihution presented in Fig. 1 has heen approximated 
he a broken line in the interest of an easier manageability. The approximation 
deviated only insignificantly in the calculation of tlw peripheral velocity. 

SUmlUal'Y 

The author describes equations of the mixing viscous component for the turbulent 
flow within a block pulley (shell) shaped vortex chamber. By re\\Titing: the equations the paper 
presents the possibility to calculate the turbulent viscosity from the measurement of the 
velocity distribution. Eyaluations of an actual example of the velocity distribution. compared 
with the results obtained by the distribution values of Escuidier's formula are presented. 
and a broken line' method to approximate the turbulent viscosity is proposed. 
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