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Introduction

Vehicles will be treated as swinging systems. In this case any particular
swinging system «; can be considered as an element of the set 77 of all vehicle
swinging systems.

Let p be an equivalence relation defined on the pairs of elements of ¥.
As it is well known, every equivalence relation generates a division of the
elements of I into disjoint classes (Fig. 1).

Two vehicle swinging systems, say a, and a, are equivalent if and only

if any pair of input and output helonging to a, belongs also to a,. and con-
versely (Fig. 2).
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From every equivalence class due to the equivalence relation it is suffi-
cient to pick out one representative element makingup aset{z, 3, v,...} TV

(Fig. 3).

1. Basic assumptions

The following assumptions will be made on the investigated vehicle

swinging systems:
I. The car body is rigid.

II. The springs and shock absorbers have nonlinear characteristics,

I11. The vehicle is excited only by the stochastic road unevennesses.

For the sake of simplicity only plane models will he considered neglect-
ing transversal oscillations and studying only vertical ones (Figs 4 and 35).

The systems of differential equations deseribing such systems are either
well known from the literature or can be set up without particular difficulties.

The applicability of such models for vehicles having not too long frames
has been justified by measurements by Rossox, J. D., Dopps, C. J., M1TSCEKE,
M.. Irosvay, L. ete. but exclusively for particular vehicle types i.e. nonlinear
systems with given numerical characteristics and parameters ([1], [2], [3]).
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2. The transformations and the structure of systems

Essentially, our equivalence investigation is an expedient transformation
of the nonlinear differential equation system describing the vehicle oscilla-
tions. Thereby equivalent systems are described by (numerically) identical
sets of differential equations. However, the formal identity of the sets of
differential equations of two vehicle swinging systems having two or more
inputs is only a necessary bhut not always sufficient condition of equivalence.
Namely, if the sets of input functions of the two systems have no common
element then no equivalence hetween the systems (as defined in the Introduec-
tion) can be shown. This is the case of two vehicle swinging systems equivalent
up to their sets of differential equations but of different gauges. (This is the
case of quasi-equivalence and note that if the inputs of the two systems com-
prise identical excitation then the svstems will satisfy the strict conditions of
the definition of equivalence.) Consequently, in the case of vehicles with two
or more axles a sufficient condition of the equivalence is the gauge identity
between the two systems.

In this analysis, each equivalence class will comprise systems equivalent
up to their sets of differential equations; we choose representative elements
from them, making up a representative system to he studied in the optimi-
zation procedure, In most practical cases the elements of the system have

a constant parameter . and freelv chosen parameters [g¢, 1] where:
I ¢ 3 p (N

o — matrix of generalized mass proportion factors,
lg.w] — vector of nonlinear spring and shock absorber characteristies refer-

ring to unit generalized masses.

Thus, the problem is to determine the optimal value of [¢, 3] for a given
value of u. (There are, however, favourable cases where 1 is not fixed either.)

It should be mentioned that this method suits transformation of existing
svstems with excellent properties to new systems with different dimensions
and masses but with theoretically identical vibrational properties.

The coordinates of the swinging system are advisably chosen accord-
ing to Fig. 4. Namely then it is casy to see if the front and rear parts of our
swinging system can be decomposed into two subsystems with two degrees of
freedom vibrating independently of each other.

Similar advantages are offered by choosing the coordinates as shown in
Fig. 5 where:

S;  — nonlinear spring characteristics;

K, — nonlinear shock absorber characteristics:
M, m — car body masses;

m;  — axle masses;

¢, — moments of inertia of car bodies ahout their centroids.
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The system of differential equations describing the vertical vibrations
of the single vehicle in Fig. 4 is:

7]~ K{Z, — 2 +
K{Zy — Z,}

K3{Z3 — & — Kl{z_l - Z3]"

O LK{Z, — ) — Ky{Z, — Z,}

my; my, 0 0 VA
m,, m, 0 0 Z.
0 0 my; O Z.
0o 0 0 mllZ

(1)

- Si{Z, — Zs} =0
So{Zy — Z,}
Sy{Z; — g;}';sl{zl; Zs}
SiZ, — g} — So{Z, — Zy}

where
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My = My = M

The condition that the system decomposes to two independently vibrating

subsystems is
My = My = 0 &= 1 I, = &

The system of differential equations of the vehicle-trailer pair in Fig. 5 is:

m;, mg, Mz 000 -?1 =l K{Z, — Z} -
My, My Mgy 0 00 Z, Ky{Z, — Za}

My my, my 0 00 Z, Ki{Zs — Zg}

00 0 m 0 0 Z,; Kf{Z,— &) — K{Z,— Z4}

0 0 0 0 m o Z, K{Z, — g} — Ky{Zy, — Z3}

0 0 0 0 0 mg_ || Zs K{Zs — &) — Ky{Z, — Zg} |
(2)
+| ${Z, — 2} =0
SolZ, — Zs}

Sg{Zy — Z}
S{Zy— &) - S{2,— 2}
Ss{Z5 — go} — So{Z, — Z}
L Se{Zs — g3} — Sa{Zy — Z}_
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where
Iy 1 a®
a=-=; m =—(MEi+0)) - —(ml -+ 0,);
5y m = (ME6,) + (i 1 0)
my— (M- 0,) + LTV 0,
I2 2
My = = (ml} + 0.5 myy — may = = (Ml 1, — 0,) — 2D 1 0,
2 T P :
1+ e

myy = Mg = — (05 — mll5): my = my, =

a
= (ml 1l — O,).

2 12 = =

The condition that the system decomposes to three vibrating subsystems
with two degrees of freedom is:

my, = my = 0
Ny = Mgy = 0 (3)
Mag = m32 — 0.

Hence the decomposition has the necessary condition I,l; = #5. A sufficient
condition is that the parameters of the swinging system satisfy

2 82
13:_£+V[£} A @
2 I m

]

where [ is the distance between the hinge and the rear axle of the vehicle [4].

Replace the third and the fourth equations of system (1) by sums of the
first and third and of the second and fourth equations, respectively. Again,
replace the fourth, fifth and sixth equations of system (2) by sums of the
first and fourth, the second and fifth, and finally, the third and sixth equa-
tions, respectively. Dividing now the i-th row of both systems by the main
diagonal element m; of the mass matrix of reduced masses leads to the rep-
resentative systems (5) and (6) defined by spring and damping characteristies
¢; and y; and reduced mass proportion factors yu;; referring to unit reduced
masses:

1 Z T "PI(Z:I - Z3) | ez — Zy) | =0

Hay Z, v(Zy — Z,) FoZy — Z,) (5)
Ha1 ?3 %(Z:s — &) Pa(Zs — &)

Py Z, va(Zy — &) | Po(Zy — 8)
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where
_ My ; __._K'<) ) _-Si(), (Z’=1127314')
=T =20 gy 230 G=1
m; m; m; (Gj=1,2,3,4)
o M3zq m;, my  Mye
Ha2 = = el L ) W o ¥
my my m, m, E—
S m m, m, m,
g = A A2 A Hao * Hoy
m, m, m, m, T
[+ w2 0 0 0O ] —21-1’ -“’1(?1‘24-*:?1(21 -Zl.ﬂ=9
Mz 1 ppg iO 0 0 |1 Zp| VG| |9lZpZs)
MMz 3 20 0 0 || Z3| |WiZ3Zg)| |9alZ3Ze)
~Zzzzoanmgieeo-o-- . . 7
KUI:T\QAZ M3 —3;1 0 0 '-{4 %(2.4-91) 94{Z;-g1) (6)
i3 Ms3~ Ko iE 0 1 0 || Zs) |¥%lds-Gpll leslZsogy)
We Mgz~ Agna J10 0 1 1 Zg 1 ¥elZe-3)) 19e(Z¢a5)
P - ! JL 4t J L .
where
b " )__K,-( ) o )#S‘( Y (1=1.2,3, , 6);
Hij = T s 71 - B i - .
Toom; ' m; m;  (j=1.2,3....,6)

Hyo = Hyy~fhyae Hy3 == Uy Hazs 51 == Hsa ° Hogs Ms3 = HUsa * Hogs
Uer = Mgz = Ha1s Ugo = Hea © MUso-

Consider the lower left submatrix of the partitioned reduced mass propor-
tion matrix . of systems (5) and (6). The non-diagonal elements of this matrix
(framed in dashed lines) can be obtained as the product of the element of the
upper left submatrix on the same place and the diagonal element in the same
row of the lower left submatrix.

All in all, the considered systems with four and six degrees of freedom
are determined by 12 and 21 independent parameters, respectively (reduced
mass proportions and nonlinear characteristics referring to unit reduced
masses),

Functioning of the systems is easier to understand by analyzing them
decomposed to suitable subsystems. For the sake of simplicity, let the spring
and shock absorber characteristics be linear.

Using Laplace transforms on the systems of differential equations per-
mits to determine the transfer functions between each input and output. In
occurrence of the deduced characteristics, the relations between the sub-
systems presenting the structure of the system are as shown in Fig. 6.

The possibility of decomposing the swinging vehicle systems to inde-
pendently vibrating subsystems of two degrees of freedom and reckoning with
vehicle seats and passengers as biological vibrating systems justifies the analy-
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sis of so-called chain models of vehicle vibrating systems [5]. Fig. 7 shows
a chain model of n degrees of freedom; its transformed system of differential
equations is:

where

wZ() + p(Z(t). &(t)) + ¢(Z(t). g(t)) = © (T
=1 p1o yobles: Hiollasliges ++ s Hroblogiag » » H(n-l),n-
0 1 Hoz: Hosllggs « » »s Hoatlay « » « Hin—1),n
0 0 1 Hags =0 e R
O O 0 1, T lLl,45 “ . [u(n-l).n
0 O 0 0, ..., 1
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1 nll
Ki Z,’ Z(_ Si Zi—Z'_
?;,,(Z, - Z‘”l) = — ( 1) : (Pi(Zi _ Zr'—l) _ ( i 1)
m; m,
Hiy i = i H (? = 2.3, . n)
C m;_y

A Link chain model with n degrees of freedom is seen to have 3n — 1 indepen-
dent parameteres.
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Fig. 8 shows the subsystems, their transfer functions and couplings in
the case of a linear system.

3. The optimization

The optimization procedure will be illustrated on a plane model with 4
degrees of freedom. The original nonlinear spring and shock absorbed charac-
teristies of the plane model are shown in Fig. 9 (full line). Fig. 10 shows the
masses and geometrical dimensions of the model.

The example refers to a system such that [,l, == 9°. In the optimization,
however, the couplings between the vibrating systems above the front and
the rear axle are neglected.
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The results show the vibration characteristics to be much improved
by replacing the spring and shock absorber characteristics of the original
system by the optimized ones.

As for the mathematical details, the problem is to optimize two swing-
ing systems with two degrees of freedom, made according to the following
steps [6]:

(1) A road section spectral density function Sg(v, w) is chosen, fitting
best to the expected stresses [7]. Beside the angular frequency w{rad/s] this
function depends also on the vehicle speed v[m/s].

(2) Amplitude transfer characteristics
tanee for these investigations are determined.

©) Optvmlza’uon is made for different speed values v b\' minimizing objec-
tive functions for linear combinations of variances of output signals most

5. S1+ 8, 1) | of impor-

lmPO?’t&ﬂ‘ﬁ L(}T' ev aluatvna the vibrations:

; . Dy, . . .
F(ky, ko, 5y, 80) = 4y Dz, — 3, =278 = 3. - L, Dy 5 — Min !
STAT
(0 <k bos 0 <Tssyg sy <Tisps 0 <Tsy <85 <l 8Spt Ags Ao g > 0) (8)

{ Eiopr(v): Eoopt(v)s s10p1(0)s S20p7(V)
Dzl~z=,op'r(‘v)e Dzl~g, opT(?)s DZ:—Z‘l,opT(@‘)s sz—gl oer(v)

where

D, = /-}—J |\ Wz (1krs g 81,50, 1 0) 2 S, (v, 00) do
i '—-E =

D= /"1“ Jﬂ | W zi—g(psk1s Bgs 510 85 i00) [P S (v, 0) do 9

T

0

e 10 .
D3z, = "“J \Wz,—2,(1-h1s gy 51,80, 10) |7 S (v, ) doo.
17

@ The optimum nonlinear characteristics are determined by generaliz-
ing the statistical linearization method by Booton, R. C. and Kazaxov, 1. E.
[8], [9]1: nonlinear characteristics @, ¥;, are to be found, which, statistically
linearized at various speeds, best approximate the linear optimum parameters
computed in step (3) [10].
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P12 Pas Prs Poi

Vimax

oj‘ [kaT(”) - j xfl(DZz—é;,OPT(”)e ”‘) - py(a, x) dx]2 dv — Min!

Vi -

Of [Reopr(2) — [ #fo(Dz,—2, 0pr(v), &) * po(b, %) dx]? dv — Min !

Visax - (10)
6Y [s10e(v) — | 2fs(Dz,—g, 0pr(®)s ) * @1 (c, %) dx]? dv — Min !

Vn‘:a: ':"

63 [32 opr(v) — | xfz_(Dza—zz,opT(U)ax) * ¢a(d, x) dx]2 dv — Min ! .

The functions f, (j=1,2,3,4) in (10) are density functions of the
input signals (depending on speed v) of the nonlinear characteristics y;,
(i = 1,2) divided by the variances of these input signals.

In (10). nonlinear characteristies 7;, and ¢; are sought for in some
defined function form. Our calculations showed the most suitable function
forms to he:

py(a, ¥) = a; sign (x)- [1 — exp (= a, x))]; a =[{a,, a,]

po(b. x) = by sign (x) - [1 — exp (— by{x )]s b= [by, b,]

n .
¢4(c, x) :'21' ;v o= [e, o0t ns €]
J=

eo(doz) = 3 oy d = [dys dys.. . dy],

j=1

In final account Eqs (10) serve for the determination of vectors a, b, ¢, d.

|a,b,c,d= ? ]

4. Results of the optimization

In Fig. 9, nonlinear characteristics of the original system A have been
plotted in full line, optimized damping charaéteristics of the system B obtained
by optimizing only the shock absorbers in dash’ line, and optimized spring
and damping characteristics of system € in dotted line. An analysis of
nonlinear characteristics points out a slight softening of springs and a consider-
able increase in damping due to optimization.

Fig. 10 shows swinging comfort factors K approximately proportional
to the variance of vertical accelerations at various points of the car body
for driving speed v = 50 [km/h] on an asphalt road. The comfort factor im-
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proved by 20 to 259, upon optimizing the dampings; combined spring and
damping optimization resulted in an improvement of 30 to 459%,.

Fig. 11 shows the specific power losses (in W) versus driving speed of
the swinging systems, The optimized system shows an average power loss by
5—109, lower than the original system.

The stability index characteuzmg the road section tracking ability of
the wheel versus the driving speed has been plotted in Fig. 12 by referring the
variance of the relative displacement between the axle and the road profile
to the static sinking of the geometrical centre of the wheel. (Upper diagram
refers to the front axle and the lower one to the rear axle.)

The optimization improved the stability indices in front by 25—-509,
and in the rear by 30—459,.

Finally, Fig. 13 shows the effective means of the specific dynamic stresses
in the bearing springs. A non-negligible result of the optimization is an
improvement of the average dynamie spring loads by 35—350° in front

and by 25—10°, in rear. compared to the original system.

0

Summary

Systems equivalent up to their systems of differential equations have been studied-
Plane models with four and six degrees of freedom have been found to have 12 and 21 inde-
pendent parameters, resp.: link models with n degrees of freedom to have 3n—1 independent
parameters,

Optimization referred to linear svstems for various speeds. An inverse statistical linear-
ization method has been applied to find optimum nonlinear characteristies which. statis-
tically linearized for each driving speed. provide the best quadratic approximation of the
optimum characteristies.

The results of the optimization are shown on a plane model of four degrees of freedom
corresponding to a medium category passenger car. Optimization of the springs and shock
absorbers of this vehicle showed a swinging comfort increase by 30—459%,. a 5—109, diminu-
tion of power losses through absorbers. an improvement by 25 —3500; (m terms of the stability
index defined in this paper) of the road section tracking capability of the wheels and finally
a 25 to 509, decrease of dynamie stresses in the bearing springs.
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