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1. Introduction

By the identification of systems we mean the construction of the model
{optimal in a certain sense) of an unknown system! on the basis of its input
and output processes observed. The ‘‘classical” theory on filtration, extra-
polation and interpolation of stationary time series [1.2] developed by
Wiener and Kolmogorov independently from each other during the World War,
IT can be regarded the basic work of system identification. In the appen-
dix to Wiener's fundamental work [1] Levinson introduces Wiener’s epoch
— making results in “identification” formulation.

The essence of the identification of linear systems is: the actual output
is estimated by the linear functional of the input signal realization and the
arhitrary weighting function in the estimation is determined on the basis
of the principle of “‘minimal mean squares error’” from the Wiener— Hopf{ in-
tegral equation. The W

ener— Hopt integral equation is of the Fredholm type
[5]. and in it there are auto and cross correlation coefficients. Thus the (linear)
svstemidentification is based on the application of these measures of dependence.
These measures of dependence were introduced by K. Pearson and F. Galton
and were generalized by Wiener and Kolmogorov for stochastic processes.

In the investigation of linear systems it is especially favourable if a so-
called “white noise” generator [4] is used at the input.? In this case, the so-
called weighting function of the system is obtained as the cross-correlation
coefficient (function) of the input and output signal.

Im this paper this “‘active identification” method will be generalized
for nonlinear systems of Hammerstein type [3].

! The system can be the subject of telecommunication. biological economical ete. investi-
aations [3. 4].

Good methods of creating of *white noise”. which cannot be developed physically.
are at our disposal. see e.g. [4].
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The identification of non-linear dynamic systems. that began with
Wiener’s fundamental MIT report [6. 7] took another direction. It con-
centrated less on the application of statistical measures of dependence® in
the construction of optimal estimations. The canonical methods developed
this way (the Wiener non-linear method. the Volterra model. ete.) are ofien
problematic in practice when applyving them in order to acquire the necessary
basic information and their treatment demands significant expenditure. Neither
is the identification of the non-linear dynamic systems by making use of the
linear correlation theory expedient in general. hecause in a significant num-
ber of practical cases the linear model does not ensure the adequate descrip-
tion of the real non-linear systems. It must be noted that on the basis of the
Wiener correlation theory (linecar model) the solution of the identification

problem is relatively simple and “can be comprehended”, furthérmore this

theory is “aesthetic™. Its significant advantage (compared with the non-linear
methods used up till now) is that it works only with the characteristic of the
first two moments (with expected values and correlation functions). The appli-
cation of higher moments would make the solution of the identification
problem veryv difficult.

On the information available there is a natural demand for the develop-
ment of a tvpical statistical method that is similar to the lincar (correlation)
theory, and generalizes it. furthermore it is adequate for the identification
of quite wide classes of non-linear svstems without the use of higher moments.

In this paper there is an attempt to satisfv for the class of Hammerstein
non-linear systems. with the aid of conditional expected value and correlation
ratio. The given procedure of course contains the Wiener's linear theory as
a special case. It will be proved that our procedure is the most effective

in the cluss of Hammerstein systems, in case of “white” noise inpuat signals,

*The fundamental measures of dependence of the random variables (not entirely in
gcneral) were first defined and applied in the course of his hiometrical researches by the emi-
nent English statisticians, K. Pearson and F. Galton in the turn of the century. These con-
cepts are: correlation coefficient. correlation ration and contingency. (The conditional average
concept that is in the definition of the correlation ratio and is called at present conditional
expectaiion, was introduced by Galton in 1885 in course of his biometrical investigations.)
These fundamental concepts were later supplemented with two important theoretical measures
of dependence. with the maximal correlation (Gebelein. 1941) and with the paired dependence-
modulus of the series of random rariables (Rényi, 1959). All of these can be found in Rényi's [8]
book with reference. The correlation coefficient. the correlation ratio and the mean square
contingency for arbitrary random variables were defined by Kolmogorov (1933) and Rényvi
in 1959. The correlation coefficient for processes was Interpreted by Wiener and Kolmogorov.
the correlation ratio for stationary stochastic processes by Rajbman in 1963. under the name
dispersion function [9].
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2. The connection of the identification error
and the measures of dependence

Let f(t) and g(t) be stationary time series ([1]). On the cross correlation
ratio of g referring to f the ¢quantity
LR [el) fle— 9T~ M [0 D {M[g(0) it 9}
D [g(1)] D [g(2)]
is meant, assuming that expectations, M[f(z)]. M[g(z)]. and variances D?[{(z)]
D>[g(1)] are finite.

(1)

7i(s)

Tt is evident: 0 < 5(s) =T 1 ([8]).

The main result of this paper is the following.

Theorem:

Let f(1) = f(Tfm’) be arbitrary stationary iwith unit intensity white noise (see
[11. 14] for definition), furthermore g(t) = g(T'») arbitrary normalized stationary
time series (stochastic process) where {17}, {'j?} are measure preserving., metri-
cally transitive transformation groups. Then the difference of the minimal mean
square errors of the Wiener's linear and of the Hammerstein non-linear models
can be determined from the following:
-

17 L 2
inf lim | el0) —§ flt — s) K(s) ds dr —

Ko LA, ) T o l-’r' ; (2)

7" E o
1 i o= ? . -

— inf inf lim — J glt) — ] G(ftt — s K(s)ds di = ] (n2t)— p%(2)) dt.
Ferxn, -y Gig, T LU J o , J
0 0 0

where p(t) is the cross correlation coefficient (see Appendix). furthermore

G, (G €LY — >, ~) : G(f) € L¥— oc. o) is normalized. M[G(f(t))] = 0.

DAG(f()] =1}

Note

The theorem is true also for the practically important stationary sto-
chastic processes in the “dispersion sense” [9], without assuming their ergo-
dicity.

Thus. if the x(¢) input process is a stationary white noise with unit
intensity and with an expected value of zero. and y(t) (normalized)
stochastic output processes are stationary dependents in dispersion sense.
and also G is a Borel measurable normalized function, then the following
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expression gives the difference between the minimal mean square error of the
linear and Hammerstein models:

inf M(y(t) — | h(7)x(t — 1) d7))* — inf inf M(y(r) — S B (7) G [x(t — 7)] Ydt)? =

0 G h* 0

= [ (7ls) — ils)) ds (3)
0
where 1,(t) and p,(t) ave the cross-correlation ratio and coefficient hetween
y(t) and x{z).

Proof
> .
The infimum referring to K function, where G is fixed is posited for
the K* that satisfies the following Fredholm integral equation (obtained

through the use of the Birkhoff"s ergodic theorem):

Mg(t) G(flr — u))] = | K*(s) [MIG[ftt —u)] G[f(t — s)]}ds, u>> 0 (4)
0
On the other hand. on the hasis of the very definition of white noise, where
t == s, f(t) and f(s) are independent, according to the well known theorem of
probability theory it follows that G(f(t)) and G(f(s)) are independent and we
get by a complicated caleulation (First of all it is necessary to prove this
for discrete! stationary time series. then to realize appropriate limiting transi-
tions on the basis of Riesz construction of the Lebesque integral [5]. For the
sake of simplicity we will not deal with the proof: an exact proof will be given
in the next paper) from (4)

On the basis of Wiener [1]

T o
F e

inf hm —1— \ gty — S G(f(t — s)) Ez(s) ds; dt =

Rerr, =) To—e L b

=1 — [ K*(s) M[eg(t) 6(f(t — )] ds (6)

™

~

where K*(s) means the unambiguous solution of the integral equation ({).

From (5) and (6) is derived

T B ~ 2
_inf  inf lim L g gty — | G[f(t — s)] K(s)ds dt =
KeL0,=) GE§ T—= + ¢ | b ' |
— inf (1 — [ M2[g(t) G(f(t — 5))] ds). (7)
Gy 0

! Theorem is new also for the discrete case the presented proof is correct and complete
for it.
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and
inf (1~ [ M) G(fle — )] ds) = 1 — =up [ M2[el) Gl — o))] ds =
=1— | sup M?[g(r) G(f(t — s))] ds (8)

It can be proved that in this case the supremum can be put behind the in-
tegral. The Dbasis of the proof (on the basis of generalized Beppo—Levy’s
theorem) is that

My
e Lot

p M*[g(t) G(f(z — 5))]

Qw

G, € §; function can be reached with only one function on a big set. A theorem
of Rénvi gives the connection of the correlation coefficient and the correlation

ratio ([8]. p. 228):
cap Me[el) G [fte — 5)]] = M{M[glt) fie — 9]} = s (9)

GEg;

From (7)., (8) and (9) we get

inf inf lnn—% [ g t)y — »'\3 G[f(t — s)] Iz(s) ds ;’dt =1 — \ n2(s) ds. (10)

SLA0, =) GE§; T--= O 5} 0
Referring to linear estimation

o(u) —= ‘ K(s) plu — syds, u> 0.

where ¢(7) is the autocorrelation coefficient.
From the Wiener— Hopf integral equation we obtain for K*
K#(s) = p(s).
using this we have

1 7 e 2
inf  lim — | ‘g(t) — | K(s) f(t — s)ds dit =
‘ 0 |

KeLa0,=) T—= 1 g

=1 — YM K*s)p(s)ds = 1 — S p*(s) ds (11)
0 .

0

From (10) and (11) follows (2) and our theorem is proved.
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Note

From (10) for the case investigated here follows the inequality:
by de <1

Q

that is the special case of the Bessel inequality and generalizes one consequence
of Rényi’s “large sieve” theorem ([8]. p. 233).

3. Applications

On the basis of Rénvi's theorem ([8]. p. 288) the equality in (9) is
reached in the case of these G for which

G[f(t — )] = a(s) M[e(t) f(t — s)] -+ b(s).
where a(s) - . [)(:9) are constant in case of fixed s.
In case of non normalized G the normalized of G is

Mleto) 9] = MOl _ g e 97, a1
;'," (s LI AL ENAY K

where &(s) = n?(s) - D?*[g(t)] is the Rajbman’s dispersion function ([9]).

o

Clfe— )] =

D

t can be seen that in a Hammerstein system of
V) = § R(s) GLfe — )] ds + 31)

equation (here 3(f) is the noise process independent of f(7)). in the case of
“white’ noise input signals. from the viewpoint of the minimal mean square
error the optimal estimation of the K € L*(0. oc) weighting function is given
by the cross correlation ratio, that of the G € §; function is given by the
Mg(t)  f(t — s)] conditional expected value. Thus for the optimal estimation

(1) = \ GIf(t — )] K(s) ds — g(t) = | M

4] 4]

[¢() [t — s)]als)ds. (12)

g >

Thisresult can be used for the identification of Hammerstein non-linear svstems,
it is analogous to the theorv of linear systems. According to it if a “white”
noise (test) signal is applied at the input of the svstem. then as the product
of the cross correlation ratio and the normalized conditional expected value
the optimal estimation of the product of the non-linear function and the
weighting function is obtained on the basis of the mean square error (see [10]).
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Note

If the input signal is a white noise process. in the case of a linear sta-
tionary svstem. when the behavior of the system is described by the

y(t) = | K(s) f(t — s)ds — (t)
0
(where £(f) is the noise process uncorrelated of f{r)) from the viewpoint of the
minimum mean square error, the optimal estimation of the K € LY0, =c)
welghting function is given by the cross correlation coefficient and for the
optimal estimation we obtain that

2(t) = k o(s) f(t — syds.
0
It is easy to understand that applying the estimation for linear systems, if f(z)

is unit white noise process then hecause of

ne) = elr) (13)
_ R [ 1 for & /‘»O
Mlg(ty f(t — s)] = sign p{s) f{t — s}, where sign & = 0 for £=0
! —1 for 570

we obtain

o ~ . - ~ 2

Hoy= | () Mlgt) fir—)]ds= | pls) signp(s)fi—s)ds= [ pls) flt—5)ds.

] [§] 0

that is the (12) model at the testing of thelinear dynamiec system “automati-
cally” ensures the optimal linear cstimation with the correlation coefficient
from the viewpoint of the mean square error.

Finally the relation obtained as a result of Theorem (2) provides

an opportunity to consider the
N o= | (%(s) — ¢%(s)) ds (14)
0
as degree of the non-linearity of the Hammerstein system [10].
From (10) it immediately follows
0N (15)
N = 0 if the system is linear and N = 1 where there is a non-linear
deterministic evstem where the linear model cannot be applied (e.g. the &

funetion is of ¥* form when k is an even number) and the test signal f(t) is Gaus-

gian white noise with unit intensiiv.
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This measure of the non-linearity is a generalization of the ‘“elassical”
K. Pearson degree of non-linearity for two random variables. In fact if
“stochastic processes™ g(t) and f(¢) are independent of ¢, e.g. they are random
variables. then obviously according to (14)

Ne=ry2—p

where obviously

inf M(g— (a +0bf)) — inf M(g — G(f))>=n>— @
&b G
with n correlation ratio and p correlation coefficient between the random
variables g and f.

The relative degree of non-linearity can be interesting, it can be defined
as follows

Np= (16)
T(s) ds
5
It is easy to understand that the following inequality is extant:
0< N <1 (17)

Example (1)

Let us consider the definition of non-linearity degree in the case of a
Hammerstein system with quadratic non-linearity where the equation giving
the relation between the input x(¢) and the output y(#) stochastic processes has
the form:

y(t) = ‘ h(s) Gy[x{t — s)]ds

(8]

where Gy(x) = ax® -~ bx - ¢, here a. b and ¢ can be any constant (Fig. 1).

Hammerstein's system without noise
Non-linear static Linear dinamic

x(t) Galx} his) ylt

Fig. 1

Let the input (tesiing) signal be a Gaussian white noise with an
expected value M[x(#)] = 0 and with unit intensity. Then the conditional
expected value of y(t) (= v(1) — M[y(1)]) referring to x(z) is

My(t) | 2(t — 7)] = ah(r) (¥t — 1) — 1) = bh(7) x(t — 7)
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o
=~1

whence the cross-correlation ratio

u(T) = M{M?[y(t) x(t — )]} 2a®h*(t) — b*h¥(7)
w D2[v(1)] D2|y(1)]
where the variance of y(t) output:

D[y(1)] = 2a* [ R(s)ds + B2 | Ie(s) ds

Obviously, the cross-correlation coefficient is:

o (T) = bh(t)

The non-linearity degree according to (2). (14) is:

| 2a® h*(s)ds

S

T ‘ (Y]\l\(f) - P%\(f)) dt = “U

5,2
8]

—a-

26 | R¥e) dt == b? \ RA(t) di 2a* — b

0 0

Thus the non-linearity degree of the given dvnamic system corresponds to the
“non-linearitv measure™ of the G, function.

The above statement stands also for a more general case, namely when
the above mentioned white noise and the G(x) function can be given in the
following form:

Glx) = X aHy(

F=1
where Hy(x) is the Hermite polinom.

Hammerstein's system with additive noise (1)
AMNA
NS LD i
| i
% (1) Gs(x]

(t)
hisi —é——i——)b

Fig. 2

e <

If we consider the system in our example with £(t) additive noise (Iig. 2
which is not correlated with the input process and M[%(t)] = O.D?[%(¢)] = o
i.e.

[ -

() = { h(s) Gy x(t — 5)]ds — (1)
0
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then the non-linearity degree of this system according to (14)

2aG

N =
202G -+~ G - 5%
where G = K I2(t) de, furthermore the relative non-linearity degree according
to {16) “
C o2 2
) (Tl_v.\‘(z') - Pyx(f)) di 202
A‘;‘R = - T LTS 5"
. ~« Q= b_

then
0..(7) =0 and N, =1
In case of an additive noise which is not correlated with the input
Np = 1.

Example (2)

Let us define the non-linearity degree of & Hammerstein system when
the non-linear function is

Gxit — 1)] = ax¥{s — 7). *
The input (test) process is the same as given in the previous example.

Then from [9] we can compute the cross-correlation ratio:

R QL (u) - Ok (u h(u
Ral) = (2 ) I )
9V h(s)yds — 6 | B3(s)ds | h¥(s)ds
i s) 0
and the cross-correlation coefficient:
p_-,.,_\-(T‘) — __.__3._11&1___ .

115 \ IP(s)ds

Thus the non-linearity degree of the dynamic system:

o S

| () — ety ae= | | AR Y VR A

5 o \ 1112(5> ds 15 _\:t ]12(3) (ZS,

3} 4]

(1 } [

* For the sake of simplicity we consider the case wherea = 1. It is easy to show that
with any @ == 0 we have the same result.
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Let us consider the above case with any stationary additive noise £(t) (not

correlated with the input) where M[5(t)] = 0 and D?[&(1)] = &%

Hence the non-linearity degree is

_ Jf ETSUINCYOR I i

115 { k(s)ds = o* 151 h*(s)ds + o?

i )

0
and the relative non-linearity degree according to (15)

6 \\ h2(t) dt

5
Np== -t =
15 | B3(s)ds 2
0
Appendix

In the following we summarize the most important and known measures
of dependence and their most significant characteristics with regards to ran-
dom variables as well as to stochastic processes. In this short summary we
also mention some new results concerning measures of dependence applied to
stochastic processes.

1. Correlation coefficient

The simplest and best known measure of dependence showing the
relation between two random variables is the correlation coefficient

el
=
—
—
¥

|

R(E, ) = MIE = ME) (- M)] _ M(E) - M(E) M) )
B D(%) D(») D(§) D(n)

Its most important characteristics:

TR(S.n) <1

R = 1if and only if 9 == a& — b (where a and b are constants).

1. 0-
2,

3. If & and 5 are independent, then R = 0.

4. R = 0 (i.e. £ and 3 are uncorrelated) does not mean that & and £ are
independent.

The 2nd and 4th characteristics are great disadvantages of thiz measure
of dependence.
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in the case of {Z,}i" (stationary time series) the definition of the
so-called autocorrelation coefficient (Wiener and Kolmogorov):

N
¢; = R.({55) = \lyim N 1 ;‘: U (I1)
Noeeow 20V —— fo=s — N

(11T)

The above definitions for stationary. stochastic processes in the continuous
case are the following:

, . T I, Ny . ,

o) = lim —— | ft = 7) fl)dt = R(J. f: 7 (1)
7. 2T ¢

.1 7 L R

() = lim v | flt == 1) gle)dt = R(f. g: 1) (1119
. 2T 7

Definition: {§,} is stationary if the T measure-preserving transformation
s = = n
exists: &, = T w).

Then according to the ergodie theorem of Birkhoff (11). (I1I). (II)
and (IIl") are finite concerning almost every o.

Definition: {,} is stationary, if there is a measure preserving group
fT’J,\r, of T transformation, i.e. TAT" ) = T (o) and also £: &, = {(T'w)

Definition: T and T} is metrically transzitive if their nontrivial in-
variant set does not exist,

Definition: {5} and {£,} is ergodic if T and {T"} is metrically transi-
tive.

Then according to the theorem of Birkhoff:

R(f. fr7) = ¢lv) = fT ) _fm des

R(f.g:1) = p(r) = | fIT w) glo) do

0

In the{ s}, o {%,},. continuous case we will use (after Wiener) the
symbols f(1) = f(t. w) and g(¢) = g(t. ») in place of () and 5,(m).
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2. Correlation ratio

The correlation ratio is one of the most general measures of dependence
showing how strong the (non-linear) relation is between two random variables:

K () — | MOL (1§ — M(m)) _ DM(z§)) | DAy — M[D(n 5]
& D() I D(x)

a '\

u

(Iv)

sinece e.g. according to D¥*5) = D*(B(y/2
D3(M(%/%)) is a part of D(j) relative to &, si

i only (it is a homoscedastic relation).
(If conditional variance D(1/%) depends on £, then we call it heteroscedastic

relation according to Bernstein.)

/£)) which shows that
) depends usually on

The most important features of the correlation ratio:
I

1. 0 <7 K.y — 1.

2. K. (1/) — 1 if and onlv if 5; = G(%) where G is Borel-measurable (which
is advantageous for the correlation coefficient).

3. If £ and 1 are independent then K = 0 but from K = 0 independence
does not follow. However, it is true that K = 0 -—— R = (.

If 5 =at

dist ibuiion. then K = R(r. &)l

i

b -+ » where v is a random variable with Gaussian

Note : Ii' I and 7 are random variables. D(i;) - ~ = and G is Borel-meas-
urable. then the value of “mean square error of estimate™

My - GEE) v)
will be minimal in the case of G(5) = M(sy; 5) and this error is
D2(5) — D(M(5/5)) (VD)
It is easy to show that
R2 : K2

Is true in any circumstances.

The most important theorem in connection with the correlation ratio is
the Rényi— Gebhelein theorem, according to which

Ki() = sup RYG(%). 1) (VII)

sup
GG

sep

G: =: {Borel-measurable function. to which M(G(%)) and D(G(£)) -~ ~ 1.
The theorem of Rényi makes it possible to apply K to stochastic proe-

esses since R is already defined for processes.
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There is equation in (7) if and only if G(I) = aM(n/f) -~ b where a
and b are constants (for normalized processes B = 1, M = 0, these are de-
fined by their absolute value).

Definition of correlation ratio for (stationary) stochastic processes (Rajbman,

1963 [97)

Kpole(t): 1) =: | Mg(0)f(T70)] - go) do

supposing that
DM [g(e) f(T°m)]} = 1. M(g) = 0. D(g) =1
normalization is fulfilled.
In the non-normalized case

MM (g(o)[f(T () -- M¥(g)
D*(g)

K2, (glt). 1) =

Theorem (Generalization of the Rényi— Gebelein theorem for processes):

() = Kfolett). ©) = sup Re(h(f). . 7 (vIi
/ oo
HJ_. == :{h Borel-measurable functions, for w hlch D %;(‘f )) o

Proof: applying Rénvi’s theorem for £ = f(T7®) and 5 = g(o) the expres-
sion (VIII) follows directly.

n*(7) can be computed on basis of the theorem of Birkhoff and
Rényi, in the following way:

() = lim s | M(alo) e — ) elo) d

Tewes wd T
in normalized case.
Here it is also desirable in practice to compute M(g( - )f( - )) from &
realization!

This can be done in the following way:

{as)Ifls T)ds [T N
T e Mgl S ) Lo
,S;.U(f(s 7))ds A ,
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where I is the indicator function

1 i fs — 7)€
IJ(f(s - T)) = {0 if f(S _ T)QA :

3. Maximal correlation

We call maximal correlation the following measure of dependence:

(&, n) =:sup [R(u(&): v(n)! (IX)

u,v
where u and ¢ are Borel-measurable functions.
Characteristies:

1.0 <Tw(& n <L

¥ —

p(&. 1) = w(n. 3.
1 and £ are independent if and only if y» = 0 (this is one of the advan-

w o

tages of maximal correlation on the other measures of dependence dis-

cussed so far).

If = a& -+ b then p(&,4) = R(E 7).
p=11if and only if u(&) = v(y
urable.

V23 ;{k

Tts generalization for stochastic processes is evident, (see Kolmogorov,
Rozanov). Its calculation from realisation for example is a bit difficult, that
is why it is not used in practice, although theoretically it is a significant
measure of dependence (theoretically it can be regarded the best measure of
dependence — see Rényi [13]).

4. Modulus of dependence according to Rény+

The modulus of dependence by pair of a {£,} random variable series is
defined in the following way:

A=zinf{c:| 3 X (& &) xaxy <€ 3 xpk
1n

n m

This can be generalized for 4 = A({&]}) stochastic processes
A(g) =:sinf {o | [ [ (&, & K(r) K(s) de ds| < ¢ [ K2(s) ds;
00 0

where p(&;. &) is the coefficient of maximal correlation.
Characteristies:

1.1 << A < oo

~

2. If it is independent by pair, then A({£,}) = 1.
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Definition: {&,} is called “white noise” for any t and s, where ¢ == s,
then §; and & are independent., the autocorrelation function of the process is
R(§, &) = '\"‘5(1‘ — s) where ¢ is a Dirae-function and N is the intensity of
the ““white noise”. It is evident that its density spectrum (i.e. the Fourier
transformation of the autocorrelation function) is constant i.e. the white noise
cannot be realized physically.

3. It can be shown that if &, is white noise, then A(&) = 1.

Theorem

It can be proved that if f(1) and g(i) are stationary stochastic processes
then

§ Kiplelt): 7) dv = A({f(0)}) (X)

i

Note: if {f(r)} is white noise. then
A({ftny) =1 and [Mg(t)ft — ). 7 _-0

is an orthogonal normalized system for any ¢ in L} Q) as we previously men-
tioned, this not being the case, then

M(glt) flt — 7).

will already be normalized.

The Fourier series of g(¢) according to

elt) = | C(n) M(g() f(t — 7)) dv. in L)

and here for the correlation ratio C(7) = K (g(t); 7) it is clear, that it is
independent of ¢, since if g{t) is normalized and for M(./")

2C(z) = M(g(t) M(g(e) f(r — 7)) = Kyp(e(t)s )

Hence (X) gives the Bessel-unequality.

When the relation between g(t) and f(t) is written in the following form

glt) = [ K(s) H[ftr — 5)] ds

(with the Hammerstein operator) then the above mentioned orthonormal svs-
tems arve complete and in (X) we have equation.
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Summary

The paper deals with an important connection between measures of dependence
(correlation coefficient and ratio, maximal correlation ete. for stationary stochastie processes)
and identification error (by mean square error) of linear and nonlinear Hammerstein models,

On the basis of obtained results it can be proved. that the identification «f Hammerstein
models with the help of these statistical characteristics (i.e. regression function. correlation
ratio between input and output processes) is optimally defined by the mean square error
criterion in the case of a white noise input process.
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