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1. Introduction 

By the idf'ntificatiol1 of ~yst('m;; \\"p mean tlH" construction of the model 
(optimal in a certain scnse) uf all un known system 1 on the basis of its input 
and output processes ohsen'ed. The "classicar' theory on filtration, extra
polation and interpolation of stationary timc series [L:2] deYeloped by 
\Viener and Kolmogoroy independently from each other during the 'World \Var, 

IT can be regarded the basic work of system identification. In the appen
dix to .\Viener's fundamental work [1] Le\-inson introduces Wiener's epoch 
- making results in "identification" formulation. 

The essence of the identification of linear systems is: the actual output 
is estimated by the linear functional of the input signal realization and the 
arbitrary ·weighting function in the estimation is determined on the basis 
of the principle of "minimal mean squares error" from the \\'ie11e1'- Hopf in
tegral (,quation. Tlw \\'iener-Hopf integral equation is of the Fredholm type 
[.5]. and in it there are auto and eross rorrelation coefficients. Thus the (linear) 

system identifiea tion is hased on the application of these measures of dependenee. 
These mpasures of dependenee W(,H' introduced by K. Pearson and F. Galton 
and were generalized by \Vieller and Kolmogoroy for stoehastic processes. 

In the im'estigation of linear systems it is especially fayourahle if a so
called "white noi"e" generator [4-] is used at the input.2 In this case, the so
called weighting function of th(' sy"tem is ohtained as the cross-correlation 
eoefficient (function) of the input and output signal. 

In this paper this "actiye identification" method will be generalized 

for nonlinear sY5t p ms of Hammerstein type [3]. 

I The system ran be the suhject of telecommunication. biological economical etc. inyesti
gations [3. 4.]. 

Good methods of creating 01 "white noise". which cannot be cleyeloped physically, 
are at our disposal. see e.g. [.1].' 

2* 
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The identification of non-linear dynamic systems_ that hegan ,,-ith 
\"I./iener-s fundamental JUT report [6.7] took another direction. It con

centrated less on the application of statistical m('asures of dep('ndellce~ in 

the construction of optimal estimations. The canonical m('tho(1:; den~loped 
this way (the \I./ien('r non-lin('ar method, the Volterra model. ('te.) ar(' oft('n 
problematic in practice when applying them in ord('r to acquiI't, the nec{'~sary 

hasie information and their treatm('nt demands significant expenditure. :-\('it11('r 

is the identification of the non-linear dynamic systems by making use of the 

linear correlation theory expedient in generaL hecause in a significant num

ber of practical case" the linear model do('s not ensure the adequate descrip
tion of the real non-linear systems. It must he noted that on th(' hasis of the 

''V\riener corrdation theory (lineal' model) th(' solution of the identification 
pro])lem i~ relatiyely simple and "ean he comprehended", furthermore thi~ 

theory is "aesthetic". Its significant advantage (compared with the non-linear 

111etho(1:3 used up till now) is that it works only ,,-ith the characteri:::tic of the 
first two moments (with expeetecl yalues and correlation funetions). The appli

eation of higher moments ,,-ould 111ak!' the solution of the identification 

prohlem yery difficult. 

On the information ayailable there i5 a natural demand for the deYelop

ment of a typical 5t ati~ tical method that i;; :"imilar to the lineal' (correlation) 
theory, and generalize:- it. furthermore it i" adequate for the identification 

of quite 'l-ieIe cla:::se;; of non-linear systems without the U:3e of higher IllOI1Wnts. 

In this paper there is an attempt to satisfy for the eia:3s of Hammerstein 
non-linear systell1~, with the aid of eonditional expected y,tiue and corn,lation 

ratio. The giyen procedure of coursi' eontain:" the \Viener's linear theory a~ 

a speeial ease. It will he proyed that our procedure is the most effectiy<' 

in the class of Hamllleri'tein :3ystI'111:3. in ease of "whitp" noise input signals. 

"The fundamental measures of dependence of tile random variables (not entirely in 
!!eneral) were first defined and applied in the course of his hiometrical researche,. by the emi
nent Ell!di,.h :'tati"ticians. 1';:. Pearson and F. Galton in the turn of the centurv. The,.e cun
cepts ar;: correlation coefficient. correlation ration and contingency. (The conditional avera!!" 
concept that is in the definition of the correlation ratio and is called at present conditional 
expectation. was introduced by Galton in 1385 in course of his biometrica! inyestigations.) 
Thc"e fundamental concepts were later supplemented with two important theoretical measure, 
of dependence. with the maximal correlation (Gehelein. 19·H) and with the paired dependence
modllllls of the series of random l"Ilriables (Renyi, 1959). All of these ean he found in Rcnyi',. [8j 
book with reference. The correlation coefficif'nt. the correlation ratio and the mcan square 
contingency for arbitrary random yariables were defined by Kolmogoroy (1933) and Rellyi 
in 1959. The correlation coefficient for processes was interprcted by \Viener and Kolmogoro,·. 
the correlation ratio for stationary stochastic proces,.e,. by Rajbman in 1963. under the name 
dispersion JimctioTl [9]. 
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2. The connection of the identification error 
and the measures of dependence 

21 

Let fit) and gU) be stationary time series ([1]). On the eross eOITc-Iation 
ratio of g referring to f the quantity 

(~! {j\FL'dtLf(~=-~ll} ~. i\F [~(0J)12 
D [g(t)] 

[g( t) f( t_.!l D 
D [g(t)] 

(1) 

is meant, assuming that expeetations. M [f(t))' M[g(t)]. and yariances D"-[f(t)], 

D~ [g( t)] are finite. 

It is eyident: 0 )/(s) 1 ([81). 

The main result of thi" paper i~ th" following. 

Theon'm: 

Letf(t) = f(T1w) be arbitrmy stationary l{'ith unit intensity lfhite noise (see 

[11, 1-I]for definition), jitrtlzennor!' i!(t) ;::('1'1(0) arbitrary normaliz!'d stationary 

time series (stoclwstic process) lchere {Tt}. {l·t} are measure preserring. metri

cally transitir!' transformation groups. Then the difference of the minimal mean 

square errors of the TViener's linear and of the Ilammerstein non-linear models 

can be determined from the foIIO/ein{!: 

inf 
K: U(il, 

illf 
(j .: -:;1 

inf 

li 111 

T·· 

l' 1 
ill1l 

IT T 

T 

1 

T .J 
g(t) 

T 

g(t) - I fit s) K(8) ds tIt-
(:2) 

JG(f(t - s)) K(s) cl.., ~ dt j (Y)2It)- p~(t))dt, 
() 

where g(t) is the cross eorrelation eoefficient (see Appendix), furthermore 
Gf {G E V( - =, =) : G(f) E V( - :xc, =) IS normalized, :M: [G(f(t»)] = 0, 
D~[G(f(t))] = I}. 

Sote 

The theorem is true also for the practically important stationary sto
ehastic proee55e5 in the "dispersion 5en:;;e" [9], without assuming their ergo
dicity. 

Thus. if the x(t) input process is a stationary white noise 'with unit 
intensity and ,,-ith an expected yalue of zero, and y(t) (normalized) 
stochastic output processes are stationary dependents in dispersion sense, 
and also G is a Bore! measurable normalized function, then the following 
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expression giyes the difference between the minimal mean square error of the 
linear an.d Hammerstein models: 

inf M(y( t) Jlz(i)X(t i)di))~ iI~f inf M:(y( t) J h*(i) G [x(t i)] di)2 = 

" o G h" 

= J (17~.As) - q~,As)) ds (3) 
o 

where YJyAt) and pyAt) are the cross-correlation ratio and coefficient between 

y(t) and x(t). 

Proof 

The infimum referring to K function. where G is fixed is posited for 

the that satisfies the following F redholm integral equation (ohtaillt'd 
through the use of the BirkhofT s ergodic theorem): 

IVI [g( t) G (I( t - !l))] .\' K*(s) [lHfG [f(t - u)] G[I(t s)]} eIs, ll:;:::: Cl (4) 
o 

On the other hand, on the basis of the ycry definition of ",hite noise. v,'here 

t s, I(t) and f(s) are independent, according to the well known theorem of 
probability theory it follows that G(f(t)) and G(f(s)) are independent and we 
get by a complicated ealculation (First of all it is necessary to proye this 
for discrete1 stationary time series. then to realize appropriate limiting transi
tions on the basis of Riesz construction of the Lebesque integral [5]. For the 
sake of simplicity we will not deal with the proof: an exact proof will he giyen 
in the next paper) from (-1) 

K*(s) 

On the basis of Wiener [1] 

1 ! 
inf lim -- \ . g(t) 

K E U(D, ~) T -." T I) 

IV! (g(t) G [f(l s)]) . 

r G(f(t - si) K(s) ds Z dt 

=1 .f K*(s) M [g(t) GU(t s))]ds 

(5) 

(6) 

where K*( s) means the unambiguous solution of the integral equation (-1). 

From (5) and (6) is derived 

~ inf inf lim
1
. ( g(t) - \' G [J(t - s)] K(s) ds dt = 

FEU(O,x) GE,)! T--", Too 

i~~ (1 - J NF [g(t) GU(t - si)] ds), 
G ~ 0! 0 

(7) 

I Theorem is new also for the discrete case the presented proof is correct and complete 
for it. 
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and 
~ x 

inf (1 - J 1\/[2 [g(t) G(f(t - s))] as) = 1 - sup .\' J\P[g(t) G(f(t - s»)] as = 
GEfi; 0 GCI; Il 

= 1 - .r Sl~l? J\P[g(t) G(f(t - s))] as. 
o G"'1 1 

(8) 

It can he proyed that in this case the supremum can he put behind the in

tegral. The basis of the proof (on the basis of generalized Beppo-Levy's 
theorem) is that 

sup M2[g(t) G(f(t - s»)] 
G7.")f 

Go E function can he reached with only one funetion on a big set. A theorem 
of Rcnyi gives the connection of the correlation coefficient and the correlation 
ratio ([8]. p. :2:28): 

sup}P[g(t)G[f(t s)]] J\f{J\F [g(t) f(t s)]} = rl(s) . (9) 
GE:;;i 

From (7), (8) and (9) we get 

inf inf lim 1 r: g(t) 
I\".L'(O, =) G~.:;i T--x T (; 

""'-' :! 

.\' G [.f(t s)] K(s) ds at 1 J "l)2(S) as. (10) 

Referring to linear est imation 

e<:: 

p(ll) ~ J K(s) rp(ll s) ds, 11 o. 

where rp( T) is the autocorrelation coefficient. 

From the \Viener-Hopf integral equation we ohtain for K* 

K*(s) = p(s). 

using this we have 

1 T x 

inf lim - J g(t) - J K(s)f(t - s) as dt 
KEL'(O,=) T-= Too 

= ~ 

1 J K*(s) p(s) ds = 1 - J p2(S) as (11) 
o 0 

From (10) and (11) follows (2) and our theorem is proved. 
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Note 

From (10) for the case inyestigated here follows the inecluality: 

= 

\' 'fP(t) elt 1 

that is the special ease of the Bessel inequality and generalizes one consequence 
of Renyi's "large sieye" theorem ([8], p, :233). 

3. AI)plications 

On the hai'js of Renyi's theorem ([8], p, 288) the equality ill (9) j", 
reached in the ease of thes(' G for which 

G[f(t s)] (/(s) ::\l[!.[(t) f(t s)] h( s), 

\\-hert' a( s) _-c O. lies) are constant In caSt' of fixed 8. 

In ease of non 11 ormalized G the normalized of G is 

Glf(t - 5)] 
),l[g(t) f(~_~)J __ !I[git)]_ 

',9(s) 
[g(t) i(t 5)], (11) 

where 9(5) 'If(s} . D2[g(t)J is the Rajbman's dispersion funetion ([9]). 

It can lw spell that in a I-IamI!lI'l'stein system of 

y(t) J K(.s) G [f(t 5)] ds ~(t ) 

equation (here ;(t) is the noise procesi' independent of f(t»). in the case of 
"white" noise input signal;:;. fro111 the yiewpoint of the minimal mean square 
error the optimal cstimation of the K E L2(0, =) 'weighting function is given 
by the cross correlation ratio. that of the G E <-}j function is giyen by the 
~f[g(t) f(t - s)] conditional cxpccted valne. Thus for the optimal estimation 

g(t) = J G[f(t s)] K(s) ds --. i(t) J M[g(t) f(t - 5)] :1(S) ds. (12) 
(I o 

This re;:;ult can be used for the identification of Hammer5tein non-linear systems. 
it is analogous to the theory of linear systems. According to it if a "white" 
noise (test) signal is applied at the input of the system. then as the product 
of the cr08S correlation ratio and the norm alized conditional expected "alne 
the optimal estimation of the product of the non-linear function and the 
weighting function is obtained on the ha8is of the mean square error (sce [10]). 



SYSTE_II ID LYTIFICATIOS _-I-YD DEPE_,-DESCE 25 

If the input signal is a white noise proe(~ss. in the ease of a linear sta
tionarv svstem. -when the behavior of the syst('m is deseribed by the 

y(t) \' K(s) f(t - s) ds Ht) 
o 

(where ;(t) is the noise process uncorrelated of f(t)) from the viewpoint of the 
minimum mean "quare errOL tll(' optimal estimation of the K E L2(O, =) 
weighting funetion is giyen by the eross correlation eoeffieient and for the 
optimal estimation \\-e obtain that 

~(t) J p(s)fit - s)ds. 

It is easy to understand that applying the estimation for linear systems, if f(t) 
is unit \\-hit(, l1oi"" process thell hecause of 

YJ( t) p(t) 

:\lJ: [g( t ) f( t si] sign pis) f(t s). where 

we oIJtain 

sign ~ r ~ 
\-1 

(13) 

for ~ /0 
for ~ 0 
for _ ~ 0 

J "(lis) M[g(t) I(t s)] cls J pis) Eign p(s)f(t s)ds J p(s)j(t - s) lis, 
o 

that is the (12) model at the testing of the linear dynamic system "automati
cally" enSlue8 the optimal linear estimation with the correlation coefficient 
from the yiewpoint of the Inean square error. 

Finally the relation obtained as a result of Theorem (2) proyides 

an opportunity to consider the 

(14) 

as degree of the non-linearity of the Hammerst('in system [10]. 

Frolll (10) it immediateh- follo-ws 

o 1 (15) 

:y 0 if the system is linear and.V 1 where there is a non-linear 
deterministie system where the linear model eannot be applied (e.g. the G 
function is of x" form -when k is an even lHllllber) and the test signalf(t) is Gaus-
sian white noise with unit intensity. 
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This measure of the non-linearity is a generalization of the "classical" 
K. Pearson degree of non-linearity for two random variables. In fact if 
"stochastic processes" g(t) and f(t) are independent of t, e.g. they are random 
variables. then obviously according to (14) 

"where obviously 

inf M: (g ~- (a - bf))~ inf 1\1 (g G(f) r = YJ2 - p2 
a, b G 

·with YJ correlation ratio and p correlation coefficient between the random 
variables g and f. 

The relative degree of non-linearity can be interesting. it can be defined 
as follo,v"s 

(YJ2(s) p2(S)) as 
J.\'17 (16) 

.\. YJ2( s) as 
I) 

It is easy to understand that the following inequality is extant: 

o (17) 

Example (1) 

Let us consider the definition of non-linearity degree in the ease of a 
Hammerstein system with quadratic non-linearity where the equation giying 
the relation bet"'ee11 the input x(t) and the output y(t) 8toehastic processes has 
the form: 

c>-:: 

.. 1'(t) = \. h(s) Gz[x(t s)] ds 

bx + c, here a. band c can he any constant (Fig. 1). 

Hammerstein's system without noiSE 

~
NOn-\inear static Linear dinamic 

I 1 ' 

x(t) i G2(X) jLJ
j 

h (5) 

I ,--I ----'. . 

Fig. 1 

I 
I 

I y(t) 

1 • 

I 

Let the input (testing) signal be a Gaussian white nOIse with an 
expected value M[x(t)] 0 and with unit intensity. Then the conditional 

expected value of ):(t) (= y(t) l\l[y(t)]) referring to x(t) is 

1) bh(c) x(t - c) 
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'whence the cross-correlation ratio 

2 ( ) _ M {I\F Lf(t) x(t 
'f))·x T - D"[y(t)] 

T)]} 

"where the yariance of y(t) output: 

Obyiously. the cross-correlation coefficient is: 

D [y(t)] 

The non-linearity degree according to (2), (1-1) is: 

Thus the non-linearity degree of the giyen dynamic system corresponds to the 
"non-linearity measure" of the G2 function. 

The ahoye statement stands also for a more general case, namely when 
the ahoye mentionf'd whitf' noise and the G(x) function can be given in the 
follo"wing form: 

(;(x) "5' ai' H,,(x) 
..;.", 

i:=! 

where H,,(x) is the Hermite polinom. 

Hammersteln's system \'Jith addltl'.<e noise 

I NS LD I 

~ G2(x) H h(s) ~ 
I '--___ ---11 I 

Fig. :2 

If we consider the system in our example with ;(t) additin> noiEc (Fig. 2) 
v,-hich is not correlated 'with the input process and Jl[;(t)] = O.D2[;(t)] 0 2 

i.e. 

y(t) = J h(s) G2 [x(t s)] ds - ;(t) 
o 



I. JOU-P. )"ARLAKI 

then the non-linearity degree of this system according to (14) 

.) "G :Y .. " = _cr 
- ". x :2(/~ G __ b2 G (J2 

where G 
to (16) 

J Jz2(t) elL furthermore the reiatiyc non-linearity degree according 
o 

.I' (YJ~'x(l) - p~.Jt)) dt 
() 

It 15 obyiou5 from this example that if 

G [x(t T) ] (fX~(t T) 

then 

p,.jT) IJ and -'-.n 1 

In case of an additi\c noise which IS not correlated with the input 

Example (:2) 

Let us define the nOIl-linearity degrce of c' Haml1IPrstcin "ysteDl when 

the non-linear function IS 

G [x(t T) ] T). * 

The input (test) I'1"Oee5" is the ;;ame <1" gi\"PIl ill the preyious example. 

Then from [9] \\"e can compute the cross-correlation ratio: 

YJ~.x( l!) = 
9 

9 .\. Jz2(S) cls - 6.1' 172(S) ds 

and the crosi'-correlatioll coefficient: 

P: .. AT) = 
15 \' 172(S) ds 

ri 

\ h2(s) ds 

Thus the non-linearity degree of the dynamic system: 

T )' ~. ~ J' fz2(t) 
,"\x =. (YJ\·At) - Pyx(t)) elt =, (.,2 

(I 0 '.1 I. (s) el s 

* for the sake of i'implicity \\"(~ consider the case where Cl = 1. It is easy to show that 
with any a c= U we hayc the same result. 
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Let us consider the aboye case with any stationary additi,"e noise $(t) (not 

correlated with the input) where l\I[~(t)] = 0 and D2[;(t)] 0-2• 

Hence the non-linearity degree is 

6 r f 1'5~2(t) 9h
2(t)_} at = 

,'J 11'5.1 h2(s) as cr2 1'5.\ Jz2(S) as 

and the relative non-linearity degree according to (15) 

6 .\ Jz2(t) at 
(I 

15 .\' /z2(S) ds 
o 

Appendix 

"' 

In the following In" summarize the most important and known measures 
of dependence and their most significant characteristics with regards to ran

dom \"ariables as well as to stoehastic processes. In this short summary we 

also mention some new results eoncerning measure::: of dependence applied to 
stocha:::tic proce5s(,5. 

1. Correlation co(;iJiciellt 

Th(' simplest and hest kno\\"n measure of dependcnce showing the 

relation between two random variahles is the correlation coefficient 

IV!: U~).L __ ~I( ~) 1\1(2)1 
D($) D(i)) 

Its mos1 important characteristics: 

1. 0 . R(;, i)) 1 
'1 R 1 if and only if 'i a $ b (where (l and bare constant5). 

and ii are independent, then R I). 

(I) 

3. If $ 
-1. R il (i.e. ~ and i) are uneorrelatecl) does not mean that:: and ~ are 

independent. 

The :2nd and -lth characteristic,. are great disadnmtages of this measure 

of dependence, 
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In the case of {En)] (stationary time series) the definition of the 
so-called auto correlation coefficient (Wiener and Kolmogoroy): 

R r~" 1- 1 ~ ft' j =·h~,J) = 1111 -')-. -, ---
- - s-= :..~\ -- 1 ,,;;';"".s 

-:::-l:· (Il) 

And the cros;;:-co!Tplation coefficient of the two proces;;:es i;;:: 

(Ill) 

The aboye definitions for ;;:tationary. ;;:tocha"tic process eo" in the continuous 
casp are tllP follo,\-ing: 

(((T) = lim ~ rf(t - T)f(t)dt = R(ff: T) 
T· •• c :2 T ':'T 

. 1 T 
'piT) = hm ')' J fit -.- T) g(t) elt 

T ••• _1 - T 
R(f g: c) 

(Il') 

(Ill') 

Definition: { is stationary if tlw T meao"ure-prf'serying tnmsformation 

existo": En E(T" (n). 

Then according to the ergo die theorcm of Birkhoff (Il). (Ill), (Il') 
and (Ill') arc finite concerning almoEt every (I). 

Definition: {EJ iE stationary. if there iE a measure presen-ing group 
{Ti- of T transformation. i.e. Ti(T"('J) T(i. -1')((1)) and also E: Et E(Tt(!)) 
exist;;. 

Definition: T and {T i
-: lE metrically trallsitiye if their non trivial in

yariant ;;:ct doe;;: not exist, 

Dpfinitioll: {En} and {EJ is ergodic if T and {T i
.} is metrically tranSl-

tive. 

Then according to the theorem of Birkhoff: 

R(ff: T) (r( T) 

and 

gins (1). 

In thp{ Et continuous case wc will UEe (after Wiener) the 

;;:ymhols fit) fit. (1)) and g(t) g(t. (n) in place of Et ((!)) and iit(m). 
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2. Correlation ratio 

The correlation ratio is one of the mo~t general measures of dependence 

8howing how 8trong the (non-linear) relation is hetween two random yariables: 

: -~1 (l\'i2( 1] ~)-~~1(i7) )2 
---------_._----" _._--

sincc e.g. according to D~(/7) D~P-f(i) ~» - 1lI(D2(J)/'m which shows that 

D2(1lI()i'~») is a part of D2(1j) relatiye to ~,~incf' l\f(D2(Ji!~») depends usually on 

)] only (it is a homoscedastic relation). 

(If conditional yariance D( I)/~) depends on ;, then -\\-e call it heterosceclastic 

rclation according to Bernsteil1.) 

The most important features of the correlation ratio: 

1. 0 I(J it} 1. 
') K,(li) 1 if and only if I, G(~) where G i8 Borel-meawrable (which 

is ach-,mtagf'ous for tlH' correlation coefficient). 

3. If ~ and I, are indf'pendent then K 0 hut from K = 0 independence 

does not f;Jlow. Howe, er. it is true that K = 0 --> R O. 
-1. If If (!:: -- h J" whne J' is a randorn yariahle with Gam:sian 

distiLuiion_ 11H'n K= R(if'~)' 

_-Yote : If :: and ), are random ,-ariahl(,s. D2())) -:xc and G is Borel-meas

urable. tlH'Il the ,-,due of "mean sCIuare error of estimate" 

G( ~)J2) (Y) 

will he minimal In the f',:sp of G(E) 1\1(/; ~) and this error IS 

(YI) 

It is easy to show that 

is true in any eircumstances. 

The most important theorem in connection with the correlation ratio is 

the Renyi-GebeIeill theorpm. aceording to which 

r--'( R'(G" Ai if) = sup ~ (.::). If). (YII) 
GcGE 

G; : {Borel-mea:mrahIe function. to which M(G(~) alllI D(G(;») ex:}. 

The theorem of Renyi makes it possible to apply ]( to stochastie proc

esses since R is already defined for proce~sf~s. 
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There is equation III (7) if and only if G(~) = aM(1] ( ~) -T-- b where a 
and bare eonstants (for normalized processes D 1. M 0, these are de-
fined hy their absolute yalue). 

1 
a~ -~~-----

D~(M(I] m b2 = 
I\P( 1]) 

D2(M(1] m 
Definition of corrdation ratio for (stationary) stochastic processes (Rajbman, 
1963 [9]) 

Kf(t)(g(t): T) =: .\' IVI[g(w)f(TTm)] . g(cn) dm 
o 

supposing that 

[g( (J) )f(r(o)]} 1. M(g) 0, D(g) 1 

normalization is fulfilled. 

In tlw non-normalized case 

M [NF(g(co))!f(TT((»))J2 I\.J2(g) 

D2(g) 

Theorem (Generalization of the Renyi - Gehelein theorem for processes): 

sup R2(lz(f), g, T) (VIII) 
hEHj 

{ 
.. M (lz(f(w))") / co} 

Hf : h Borel-measurahle fU11ct10118, for wllleh D (h(f(m))) <: =, . 

Proof: applying Rcnyi'" theorem for; f(TT(!)) and i7 g(ct)) the expres-
sion (VIII) follows directly. 

"f]2( T) can be computed on basis of the theorem of Birkhoff and 
Renyi, in the following way: 

in normalized ease. 

1 T 
lim -;;- .I M(g(t)f(t 
T -- '" _T -- T 

T))g(t)dt 

Here it is a],;o desirahll' In practic(> to compute M(g( . )f( . )) from a 
realization! 

This can he done in tlIP following way: 

T 

.\' g(s) IJ(f(s T))ds 
-T 

T 

S IJ(f(s T))cls 

-l\I(g(t) f(t 
T) 

-T 
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where I is the indicator function 

IAf(s - T») 

3. M~aximal correlation 

{ 0
1 if f(s - T)ELl 

if f(s - THL1 . 

We call maxim al correlation the following measure of dependence: 

ll,t' 

where II and l' are Borel-measurable functions. 

Characteristics: 

1. 0 lj!(~: ,,) 1. 
2. lp(~: ,,) = Ip(J), ~). 
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(IX) 

3. I) and ~ are independent if and only if If! = 0 (this is one of the advan
tages of maximal correlation on the other measures of dependence dis

cussed so far). 

4. If 1] = a~ b then ,p(~, J7) = R(~, 17) • 
5. lp 1 if and onlv if ll(~) = VCi) where II and i' are Borel-meas-

urable. 

Its generalization for 8tochastic processes is eyident, (see Kolmogoroy, 
Rozanoy ). Its calculation from realisation for example is a bit difficult, that 
i8 why it i8 not used in practice, although theoretically it is a significant 
measure of dependence (theoretically it can be regarded the hest measure of 
dependence see Renyi [13]). 

4. Nlodllllls of dependence according to RenY7 

The modulus of dependence by pair of a {~n} random yariahle series is 
defined in the following way: 

A : inf {c : i:~ ~ lP(~n' ~m) xnxm i < c ~ x~}. 
11 m 11 

This can he gep<>ralized for A = A({ ~t}) stochastic processes 

A(~t) =: j!!f (" :!.\ J lp(~t, ~~) 1((t) 1((s) dt ds) s;: c J 1(2(S) ds'J 
000 

where '1p(;t, ;5) is the coefficient of maximal correlation. 

Characteristics: 

1. 1 <A < =. 
2. If it is independent hy pail', then A({ ~n}) = 1. 

3 
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Definition: {~t} is called "white noise" for any t and s, where t -'- s, 
then ~t and ~s are independent, the auto correlation function of the process is 
R(~I' ~s) = Nb(t s) where b is a Dirac-function and N is the intensity of 
the "white noise". It is eyident that its density spectrum (i.e. the Fourier 
transformation of the autocorrelation function) is constant i.e. the white noise 
cannot he realize(} physically. 

3. It can he shown that if $/ is white noise, then A( ~t) 1. 

Theorem 

It can he proyed that if fit) and get) aTe stationary stochastic processes 
then 

.\' Kju/g(t): T) dT./ A({f(t)}) 

cVote: if {fit)} is white noise. then 

--l( ff(t n) 1 am} (IVI(g(t)f(t - T))}, 7: / 0 

i5 an orthogonal normalized system for any t in L2(Q) as 'we preyiously men
tioned. this not heing the case, then 

IVI(git) fit 7:» 11(IVI(g(t) f(t·- i») 

D(IVHg(t) .f(t T») 

will alreach' he normalized, 

The Fourier series of get) aceording to 

get) J C(T) Yi(g(t)f(t .- T») dT, in V(Q) 
o 

and here for the correlation ratio C(T) = Kf(l)(g(t); T) it is clear, that it is 
independent of t, since if g(t) is normalized and for J[(.!') 

~C(T) = M(g(t) M(g(t)f(t - T»)) = Kj(t)(g(t); T) 

Hence (X) giyes the Bessel-unequality. 

When the relation between get) and f(t) is written in the following form 

= 

g(t) J K(s) H[f(t s)] ds 
o 

(with the Hammerstein operator) then the ahoye mentioned orthonormal sys
tems are complete and in (X) we have equation. 
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SUlllmary 

The paper deals with an important connection between measures of dependence 
(correlation coefficient and ratio. maximal correlation etc. for stationary stochastic processes) 
and identification error (by mean square error) of linear and nonlinear Hammerstein models. 

On the basis of obtained results it can be proyed, that the identification (f Hammerstein 
models with the help of these statistical characteristics (i.e. regression function, correlation 
ratio between input and output processes) is optimally defined by the mean square error 
criterion in the case of a white noise input process. 
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