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I. Introduction 

Speaking of a structure, symmetry is mostly meant as geometrical 
~ymmetry. Its simplest case is symmetry about a plane where at least one 

plane exists, such that the tested object reflected hy it is mapped onto itself. 
In t he following. symmetry is always understood as simple symmetry about 
a plane. no utilization of eventual other (geometry) symmetries is attempted. 

In nlf'chanical analyses, symmetries of rigidity, damping, mass distribu­
tion characteristics. or of loads are considered as extensions of geometrical 
symm('try. Thcse lattcr will he arbitrarily termed external symmetries, as 
an unambiguous distinction from internal symmetries of linear mechanics, 
formulated in (,xchangeability theorems, relying on deeper physical relation­

ships. 
In the occurcnce of external symmetry in these terms (to be called 

further on: symmetry), on the one hand, the computation work may be reduced 
by hah-ing or still more subdi"dding the tested structure into independent 
substructure:;, and on the other hand, numerical computations are more 
reliable and easier to evaluate. 

Often, the structure is only "nearly" symmetric, hence quasi-symmetric, 
because of usual small-area disturhances of the overall symmetry. Familiar 
problems of this kind are in the case of vehicles - frame symmetry troubles 
duc to one-sided doors of autobuses, or to the location of mechanical equip­
ment in motor coaches. 

Jlaking use of advantages rcsiding in symmetry will be shown to be 
cxempt from problems, therefore the natural demand arises to handle quasi­
symmetric cases in a way to manage the greatest part of advantages fully 
exploitable in perfect symmetry cases. Structural analyses may henefit from 
a procedure relying on the connection principle [1, 2], proyiding for the quoted 
adyantages also in the quasi-symmetric case hy aptly selecting the load vector 
~o that in any stcp of computation one has to do with a symmetric structure. 
For the dynamic analysis of quasi-symmetric cases there is, however, no exact 
m~thod ayailabl~ at present. 
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A method will I)\: suggei'ted for th(e dynamic analysis of quasi-symmetric 
eases sneh that if a latent but close symmetry exists. it help::: to recognize it. 
permitting analysis of the structure as a symmetric Oill'. For an eff.·ctiyely 
disturbed symmetry, the suggested method facilitates selection of the mechan­
ically dominant symmetry. to underlie a fairly close approximation. 

2. Analysis of symmetrical systems by utilizing the symmetry 

This study will refer to linear systems or their matrix representations 
for some coordinate selection. 

2.1 Static anaiJ·ses 

In static analysis, a mechanical s;-stem may be described e.g. hv the 
stiffness matrix S of OraeI' n, and hy generalized displacements q: due tn 
generalized load f. Hence 

Sq = f (1) 

The system is assumed to he symmetric, there is a matrix Q usually 
vv"ith several alternatives - permitting transfer to coordinates Y Teflecting 
symmetry conditions of the structure through transformation 

q= Qy (2) 

replacing, for instance, pair of the rotation-translation coordinates disrupting 
the symmetry hy a pair of translation coordinatcs. Since coordinates y already 
reflect the symmetry conditions of the structure. an order may he found 
where every coordinate joins its counterpaTt in symmetry - provided n 

IS even_ A vector 'with this feature may formally he obtained from 

y= Px (3) 

,,,-here P i8 an aptly selected permuting matrix of order n. Coordinate trans­
formations (2) and (3) lead to 

(p* Q* SQP)x P*Q*f (4) 

of a form suitable to he joined hy a non-singular matTix D constructed a,; 
described in [3] such that transformation 

D*(P* Q* SQP)D z = D*(P* Q* f) (5 ) 

results in two independent systems. 

Introducing notation T = QPD yields 

T* STz = T*f ( 6) 
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containing matrix T*ST. a diagonal hypermatrix \\-ith two hloeks of exactly 
hah-pd size if n is eyell. 

If n i~ odd. then one coordinate has ll<l :3YI1lnwtric counterpart (it being 
1I1 the ",ymm('try plane); initially till' pl'rtaining l'CIuation can he considerefl 

<Ii' to belong to any subsyst(·JlI. 
Proyided the system has Et'veral external synlluetries subsystem 

~ymmetries - th(' obtained, half-siz(, problems may he further reduced. 

Th(' same procedure is deduced in [3] by the flexibility rather than hy 
the stiffness matrix. with no es!'ential difference. 

The actual selection relie~ on the compatihility Iv-ith the usual formula­

tion of dynamic prohlem~. 

2.2 Dynamic analyses 

The structural problem uU(kr 2.1 the dynamic problems of the form 

l\! q -.:. K q -'- § q = f(t) (7) 

can he assigned to, where the hen' introduced symmetric matrices 1\-1 and K 
are inertia and damping characteristics of tlw sy~tem. resp., and t i" timp. 

_-\pplying the same procedure as hefort,. 

T* lVITz ..:.. T" KTz ..:.. T* §Tz = T* f(t) (8) 

For a system identically inyolving symmetries of rigidity, damping 

and inertia. matrix T seleeted as deEcrihed above. primarily depending on 

the order of coordinates y causes also Eq. (8) to decompose. 
Let us mention t hat the somew-hat mcchanical estahlishment of matrix 

D in [3] may be replaccd by another method. For the treatment of yehides, 
in the chosen coordinate system, matrix: M is often diagonal, K and S are of 

5imilar construction, since dampings aTe modelled as parallel connected to 
elastic elements. No matter that the damping matrix often contains more 

of zero elements than the stiffness one, that is, from the aspect of procedme. 

occurrence of cases Sij ...:. 0, kij = ° for some subscript pairs i, j is irrelevant. 
These items may he utilized in constructing transformation matrices 

depending on the model parameters. 
It is worth mentioning that to transformation matrice;;; or transformed 

equations mostly interf'sting physical int(~l'pl'etations may he assigned, since 

models of lower df'grees of freedom of the type (8) may hint to peculiarities 
of the original prohlem. likely to remain hidden in the original form (7). 

Remind that, provided the component transformation matrix (8) is non­

singular. then this is a similarity transformation ,\-ith respect to the algebraic 

eigenyalue problem belonging to the dynamic problem, that is, eigenvalues 
do not change in transformation. only that coordinatei' of the eigenvalues are 
obtained in the new system. 
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Examples: 

As an illustration of tho,;e ,;aid above. let us consider the symmetric 
vibrating system ,,,ith four degrees of freedom seen in Fig. 1. 

The displacement equation In the system of coordinates qi: 

r:' 0 0 0 

J,l 
ql l 

1nl 0 0 q2 
1ns a2 + J s Ins a2 

0 0 q3 
4a2 4a2 

0 0 
m,a' ,J, J q1 

-t·a2 4a2 

k 1 k;) 0 -k3 0 ql 

0 k I 1., 0 -k3 qz 1 3 
-L , 

-r 

-1.'3 0 h3 0 13 
0 -k:3 0 k 3 qj 

SI S3 0 -S3 0 ql il 
0 

I 
SI ~ S3 0 -S3 qz f2 

-SO) 0 S3 0 q3 fs 
0 -S3 0 S3 q.j /1 

t f3 t I, 
ms ,Js 

q4 

:1 
Vs 

Q Q 

Fig. 1 
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In the selected coordinate system, the coefficient matrices of the displace­
ment equation do not decompo~e into indepeudent blocks, however many 
zeros they contain. 

a) Utilization of symmetry hy transformation according to [3]. 

The coordinates heing symmetric and needing no change of sequence. 

Q = P = E (unit matrix) 

y x=q 

and T = D. where 

[ -: 1 0 

n 
1 -1 0 Ol 

1 0 1 1 0 -u D= i. e. D* -
0 0 1 0 0 1 

0 O~ -1 1J 0 0 1 

According to Eq. (8) : 

2m 0 0 0 ;;1 

0 2111 0 0 Z2 

0 0 J s/a2 0 z3 

0 0 0 Ins z.l 

2(kl -+- k3) 0 2k3 0 Zl 

0 2(kl k3) 0 - 2k3 2 
..L 

- 2k3 0 2k3 0 Z3 

0 - 2k 3 0 2k3 ;;.j 

2(81 -+- 83) 0 -283 0 Zl f1-f2 
0 

I 

')( ..L ) '- 81 I 83 0 -283 Zz f1 +f2 
-;-

-283 0 28 3 0 f3-i1 Z3 

0 -283 0 283 Zj f3 -'- I1 

a decomposing system where equations containing unknowns of odd subscript 
do not contain such with eYen subscript, and vice versa. 

h) Another separation possibility 
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Be 
1 a 0 Ol 1 1 1 1-

1 a 0 

~J 
--(l a -a a 

T= and T* 
1 (l 1 0 0 1 1 

1 a 1 I) 0 -a a 

Performing multiplications specified In (8): 

2m ms 0 m 0 ::;1 

0 2a~:m --;- J, 0 ls Z'2 

ms 0 ms 0 Z3 

0 J s 0 "" 

2kl 0 0 0 

r 
Zl l 0 2a2 k l 0 0 '::2 

--;-
0 0 2k3 0 J 

0 0 0 2a2 k 3 I- ." 

2s1 0 0 0 Zl ,- fl f2 +f3 .£' 
J4 

0 2a2 SI 0 0 ""2 ~ l a(f, - f, f~- f3) 
--;-

'0 0 2.5 3 0 NO f3 11 
0 0 0 2a2 s3 _ ::;-1 a(fl - f3) 

again a decomposing system. but while subsystems trawsfOTmed in the former 
way are stiffness and damping coupled in themselves. the latter mcthod yields 
subsystems acceleration-coupled in themselves hut remaining independent 
of each other. 

3. Analysis of quasiosYllimetl'ic structures 

Solution of the symmetric case was seen earlier to require in final account 
the performance of a congruent transformation where the tTansfol'mation 
matrix can be algorithmized even in the most general case. Existence of the 
mentioned conditions is sufficient for the utilizability of symmetry. 

3.1 Static analysis in quasi-symmetric cases 

In a quasi-symmetric case, the exact solution is produced in two steps: 

Arbitrary restitution of symmetry by structural intervention; solution 
of the symmetrical problem according to 2.1. 
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Symmctric and antisYlllmetric modificatioll of the artificially "ymme­
trized 5tructure (coupling problem) so as to recover thf; original structure 

at2last. 

The essential of the procedure is seen in Fig. :2. 

-·/2 -.-1/2 

Fig . . ') 

Eyery step of the prOCedUl'f; has heen developed and is actually achiev­
able [4.2]. The computation method can he considered as convenient selection 
nE load ,-eetors applied on the symmetric structure, since the symmetry 
disturbance of the given structure under a given outer load may be interpreted 
as if the symmetric structure replacing the quasi-symmetric one were acted 
upon, in addition to the original load. hy another, aptly selected externa! 
equilibrium load. 

3.2 Dynamic analysis 

The fundamental difficulty of utilizing quasi-symmetry 111 dynamic 
cases is due -- to our knowledge - to the missing generalization development 
of the coupling problem [5] for general cases. As a result. ulterior correction 
of modifications to restore the symmetry cannot he performed. 

Earlier, the static analysis of quasi-symmetric structures consisted in 
an approximation omitting the step of modification. Essentially the same 
method , .. -ill be followed now, except that as far as possihle the slightest modifi­
cation likely to result in a symmetric system will he sought for. 

There are several waYE of symmetrization: 

a) The considered problem iE suhjected to physical-type modifications 
such that the equation system in form (7) or (8) hecomes a decomposing one. 

In the simplest case springs, masses, dampers are omitted or assumed, type 
or number of connections is modified etc. In general, this is a rough interven­
tion causing the model to less truly simulate the examined system, to specialize, 
to reduce the numher of adjustable parameter". the ohtained results are 
misleading without cOl'l'ection. Even essential pecularities of the examined 
system were found to yanish in this kind of symmetrization. 



112 P . . \IICllELBERGER-.U. FEHESC7.I 

b) Rather than to find the hasi~ Yeetors. eongruent eo ordinate trans­
formations, simple to eonstruet, will be introdueed 'where though the equations 
do not decompose but there are few coupling terms. and of low yalue compared 
to the elements in the main diagonal of the corresponding matrix. Omission 
of the remaining coupling terms obviously causes the system to decompose. 
It is equally expedient to but slightly modify the equations before transforma­
tion e.g. hy aptly eompleting them so that after transformation again a de­
composing system arises. 

The latter proeedure nlf~ans a smaller inten-ention in the system than 
that under a) since number and range of the parameters remain the same a8 
in the original problem, the essential of the modification being the slightly 
biased reekoning with some interactions of the system along some eoordinate~. 

4. Estimation of approximation errors 

Error::' of the numerieal solution '-alues arise from two SOUTees: finit" 
aTithmetics. and biassing hy the model. Influence of finite arithmetics will 
not be eonsidered in detail. only mentioned that symmetric and minor problem::, 
can mostly be solved more efficiently and accurately than the original quasi­
symmetric prohlem. One may wonder if a "lightly inaccurate numerical solu­
tion of a large-size, quasi-symmetric. theoretically exacter model is the more 
advantageous. or a relatively more accurate and more reliable numerical 
solution of smaller. theon,tically lei's exact models or of a symmetric model 
of the original size hut of lower acrurary. Thus. elTors may be expected to 
offset each other. 

A natural demand is, however, to llH'aSUn, or estimate the errors pro­
duced either numerically or hy model biassing, and their impact on the solu­
tion. Static computations inyolve the solution of linear algebraic equation 

systems. so that the them' ems helow [6] suit error calculation. although tIlt' 

actual error is sometimes overestimated. 

Theorem --1.: If i:A-Ci 
1 < then also C-l exists such that 

IIA-III 

:A-l C-111 .:-:::: __ ! Ic..A __ C..c..I,-1 ...:.i.:...IA_-_l:..;.W_ 
1 -- 'lA Cl 

Theorem B: Assume the equation system A_x = f to be unambiguously 

~oh-able for x. For I A - C < IIA ~l:! then for an arhitrary g, also equa­

tion system Cy = g can he unambiguously solved (see the previous theorem) 
and the solutions differ hy: 



Ql"ASI·SY.\[.l!ETRY IS JIECH.-j.YICAL SYSTEJI;'; 113 

x y 

In tl1(' following. matricp,,: C and A will be considcred as exact matrix 
(.f t he qua~i-syIllnletric s tructural problenl~ and as eoefficient Inatrix of an 
aptly selected approximate symmetric problem. respectively. 

Dynamic analYiws involve the solution of both linear algebraic equation,; 
(steady yij,rations), and linear. differential equations with constant coefficients 
(transient proces5e~). Again relying on [6], a theorem will be presented for 
t hr' most delicate part of this latter problem. ('ITOr a~sessment of the eigenvalue 
problem solution. It should be mentioJJ('d a priori that it is practically not 
~harp enough for a narrow delimitation of tht' rpa! ('ITO!". 

c).-1. Ostrowski's theorem. Let \l~ a~~um(' !'igenyalue~ of matrices A 

and C. hot11 of order n, to he i. j • i·2 . .... i." and ,111' ,u2' ...• fir: respectively. 
Be 

JI Inax 
1 <:; i.j-;;; 1! 

1 11 

b=-.- ~ 
n111 i=! 

::\ow, for an arbitrary :eigenvalue i.l: of matrix 

(,f C can I,,' found. such that: 

at least one eigenvalue [lm 

1 k, m - 11. 

-1.1 Example of applying error assessment 7n a structural problem 

A~:-,umt" of <l quasi-symmetric static problem 

S q = f 

has led. u:-ing earlier described transformations. to an equation system of the 
form: 

8 2 E Z'l 1 
p " 

') 8 =2 0 
(in compliance with the 

" 4 1 0 theorems of exchange-
/ ., 

1 4 ':::\ 1 ability) 

For E = I' O. coupling of main diagonal hlock" Yani"hes, aud the problem 
requires the solution of only two. half-size equation systems, as against the 
original, completely coherent system. Thert'by a possible symmetric approxi­
mation of the original quasi-symmetric problem has been obtained: let us 
try to assess how close the solutions of both prohlems are. 
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To be able to apply the presented theorems to this aim. let us consider 
the coefficient matri.." pertaining to the original (detailed) quasi-symmetric 
case as C, the pertaining solution Ycctor as y, while matrix of the decomposing 
problem resulting from the selection c = f' = 0 he and the pertaining 
solution vector be x, right-hand sides being common: f = g. This selection 
is justified by the doubtless existence and easy calculability of the inverted 
of A (exactly this was the aim of the neglect: to obtain an approximate problem 
casicr to handle than the original one). A being a diagonal hypermatrix of 
non-singular blocks. 

Numerical calculatioll~ apply the Euclidean norm . 2 althongh 
theorems A and Bare yalid in any compatible Yector matrix norm [71. 

Partial rcmlt~ needed for cyaluating theorem B: 

X=~A-lf ~[4, 
30 

A-I = 0.43: .X 

1. ---:2. 8] 

0.31 : 

This error a~sessment call <lnh- he applied III t hp range c <:: 1.65. 

inequality 1'-0--" ~ 1 1" ., l' I h ! 8" ~- -/- <-- ,)e1nO' ImperatIve .. -1.ccorc Ing to t le t eorem. , , ....... 0.43 e -

the error limit is function of \ 8 • somE' rclevant numerical results arc tahulated 
in Table 1. 

Ta h 1 c 1: 

cl " A C x y X-Yi'/ x 

0.1 0.141 0.0:20 6.5% 
0.5 0.707 0.135 -13.7% 
1.0 1.414 0.481 155.:2% 

As a conclusion. :3olution of the quasi-:::ymmctric (cxactly modelled) 
problem can ;:afely he replaced. within enginecring accuracy. hy the solution 
of an artificially symmetrized (approximately modelled) problem, provided 
perturhation k:,lllll1etr;- di,;;turhance) doc,;; not f'xceed ·ci = Iyi = O.l. 

By way of checking, also the exact solution of the quasi-symmetric 
prohlem has heen determined. permitting to caleulate the effectiyc values in 
the two last colulllllS of Tahlc 1 (Tahle 2). 

Confrontation of results in Tables 1 and :2 shows assessment according 
to theorem B though to much overestimatc the effective deviation between 
vectors x and y but in the case 110; = Iyi -+ 0, the assessment accuracy' 
rapidly converges, namely the assessment theorem reflects the continuous 



Ta hie 2: 

I' '! x-y x-y I x 

0.1 0.004 1.3% 
0.5 0.011 3.5% 
1.0 0.043 1:3.9% 

dependence of the ~olutions from the coefficient matrix and the right-hand­
~ide vecto}. 

This ,>xample clearly illustrates the possibility, in case of a suitahle 
organization of the static analysis of quasi-symmetric structures, of using 
"sharpening" '~rror assessment formula(~. fitting accuracy requirements of 
engineering practice. thm. likely to 0 ffpr cl ecision crite1ia for reducing the 
Yolum,· of calculations. 

Lt't u~ notice that in the static c a S(~. exchangeability theorems specify 
f'xi~tenc(' of th" symmetry of the i'tiffuess matrix. hence of the relationship 
I' }J. Dl'composition dep(;nds on tllP (~xistence of I'xt('rnal symmetry: in 
th .. actual cast' it is cflIlfirllH,d hy th .. ,-ahlf' i' i' U. 

·1.2 Example of applying error assessment for a dYllamic problem 

To thl' structural example ahove, dynamic problem. Eq. (7) can j)(' as­
SiglWd. COI1"iderpd. for the east' of trf'atment. to }J(> of the form: 

Differ,"nlial "fIuation (9) may J)f considered to ha,-e a solution t!,',;crihiwr 
undamped frc" yibrations of the structure with the same stiffness matrix 
as in the former example, provided the mass matrix has unit elements. This 
is no f'ssential restriction. since. obviously, the mass matrix is always symmetric, 
positive definite due to physical causes. thereby it can also he written in the 
form LL*. wherf' L is a non-singular lower triangle matrix: making USf' of 
thi~ decomposition. earlif'r ~ymmetry conditions - if any - of matrix S 
can he maintained [8]. while the ma"" matrix is transformed to unit matrix. 

Similarly as in the static prohlem, also here it is attempted to decide, 
without solving the quasi-symmetric prohlem (matrix C), whether results 
obtained from the solution of an approximate symmetric problem (matrix A) 
can 1)(' acceptf'd as sufficiently accurate solutions of the original prohlem. 

To solve Eq. (9). knowledge of all eigenvalues of thf' algebraic eigen­
valup prohlf'!11 

3 p. P. Tran:i>port (l,2. 1 <)81 

8 2 I' 

2 8 
4 

1 

o (10) 
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is needed, therefore, it is attempted to apply theorem C) and to use eigen­

values i. 1, i.~. ;'3' ;'.1 of matrix A helonging to the symmetric case e = y = 0 
to approximate eigenvalues PI' P 2' P 3' ,U -1 of the original matrix C. and to a"ses,; 
the error. 

-1.2.1 Ass e s s men t l' e I y i n g 0 nth e 0 rem C 

:Matrix A heing a diagonal hypermatrix, its eigenvalues are readily 
ohtained: 

furt henllore: 

JH= 8: b= 
32 

thus: 

{ 

I, ~ -L 'I I' }1/1 48 c,; 

32 

Results havc been compiled in Tahle 3. 

Tahle 3: 

E = y 

0.1 
0.5 
1.0 

13.50 
20.18 
24.00 

1 <k, m 4. 

The obtained assessment is useless, since eigenvalues of the approximate 
problem are hy one order less than the predicted errors. Tahle 4 contains 
effective deviations of correlated eigenvalues. to that, however, also the 
eigenvalue problem of matrix C had to be solved. 

Ta hIe 4: 

C - Y , ;'I-Pli )'z-Pzi ! }'3- ,u3 i I'o-,vd 

0.1 0.0012 0.0030 0.0033 0.0009 
0.5 0.0300 0.0683 0.0768 0.0215 
1.0 0.1218 0.2212 0.2568 0.0862 

Results - and analysis of the error assessment formula sho'wed 
this method to rather poorly assess effective deviations, imposing to find 
another idea for an error assessment of merit. 
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4-.2.2 Eigenyalue error assessment by lower and 
uppf'r limit approximation 

The suggested method is safely efficient if all eigenyalues of matrix C 
for the quasi-symmetric case are real and single. The condition of real eigen­
values is met in conservative mechanical systems described by (9): in the 
actual case, beside this, the second condition prevails: all eigenvectors are 
single. 

For a better understanding of the train of thought, let us expand the 
characteristic polynomial of matrix C in the example (introducing notation): 

p(1,) = [(8 - 1])2 - 4] [(4 1] - c1'(8 1,)(4 -1]) (ll) 

Representing the independent part of the polynomial exempt from 
disturbances (c and 1') as an (actually) fourth-degree polynomial (Fig. 3) 
and, in the same coordinate system, the part depending on the disturbance 
as a quadratic function, then varying the disturbance value the part independ­
ent of the disturbance 'will be cut in different places. Projections of intersection 
points on the Ij-axis define the (exact) eigenvalues helonging to the actual 
disturbance. 

Do not consider the disturbancc in the initial quasi-symmetric problem 

as basic disturbance, referred to by a subscript 0 (co, I'D)' Remind that c = l' 

is not always met in dynamic prohlems, namely the structure to he modelled 
may be a non-conservative one, but existence of the equality is not a condition 

of applying the method. 

Fig. 3 

3* 
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If ill the actual case 10 1 ;'! ". ," {) ;' 0 then haIr 0 f the eigenvalues of the initial 
problem will be approximated from below. and the other half from ahove. 

Similarly. for 10 2 I' 2 < 10 0 I' () then all eigenvalues will be approximated from tlH~ 
opposite side than in the former case. all in all, the modified disturbancl~ 

variation (8 1 1'1 10 21' 2>"" E () ;' 0) according to the unequality 10 2 Y 2 <<: Eo f' 0 </ c'l Y 1 

is a possibility to hilaterally approximate the wanted eigenvalues. Oln-ionsly. 

provided Ei 'Yi - Eo 1'0 --+ 0 accuracy of interception hence of approximation 
fast increases. that is simply the reflection of the continuous dependence of 
solutions on initial data. hence also this asseS8ment procedure is a "sharpen­
ing" onc. 

For Eo and Yo rather close to zero. zeroing one disturbance leads to a 
decomposing. thus, ready-to-solve problem. Solution of the so-called "ove1'­
(lishl1'h(,d" p1'o})1em inv,rccpting the pigenvalue. is, however. as difficult as 

that of the basic problem. Nevertheless, determination of lower-upper approxi­
mate eigenva1ues may lw of importance for the solution of so-called svnthesis 

problems. 
--\. familiar dynamic problem in design is to selt'ct free parameter" of 

a mechanical system to mcet given specification" (e.g. stability). TIlt' 80lution 
method is thcn usually seTial analysis. when systematic ovpral1 examination 
of a set of structures is applit,d to find the closest on!' - or may])P just the 
accurat(' ont> - meeting the preconditions. In this case aho the effpct of 

disturbances of the . Eo il (J order can be reckoned with hetween strict lower 
and uppe: limits. so that eig!'l1\"alues of their approximations from below 
and from aho\"P are examined in a minor part of the set of structures. while 
in the greatest part. a one-sided (easy) approximation at engineering level 
"\\-ill do it. 

Summary 

In ,;tatic and dynamic analyses. structural SYlllmetry eall be used for reducing the 
volume of computati011s. In static ;nalY5es, quasi-sy'mmetr): can be reduced to a symu;etric 
problem. of reduced laboriousness. but in dynamic analyses it is only approximated. :\"ow. 
el05eness of the approximation can hp apprpciated by errOr a,;"essment relyiuf' on the disturb­
ancp met hod. 
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