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1. Introduction

Speaking of a structure, symmetry is mostly meant as geometrical
symmetry. Its simplest case is symmetry about a plane where at least one
plane exists, such that the tested object reflected by it is mapped onto itself.
In the following. symmetry is always understood as simple symmetry about
a plane. no utilization of eventual other (geometry) symmetries is attempted.

In mechanical analyses, symmetries of rigidity, damping. mass distribu-
tion characteristics, or of loads are considered as extensions of geometrical
symmetry. These latter will be arbitrarily termed external symmetries, as
an unambiguous distinction from internal symmetries of linear mechanics,
formulated in exchangeability theorems, relying on deeper physical relation-
ships.

In the occurence of external symmetry in these terms (to be called
further on: symmetry), on the one hand, the computation work may be reduced
by halving or still more subdividing the tested structure into independent
substructures. and on the other hand, numerical computations are more
reliable and easier to evaluate.

Often, the structure is only “nearly’ symmetrie, hence quasi-symmetric,
because of usual small-area disturbances of the overall symmetry. Familiar
problems of this kind are — in the case of vehicles — frame symmetry troubles
due to one-sided doors of autobuses, or to the location of mechanical equip-
ment in motor coaches.

Making use of advantages residing in symmetry will be shown to be
exempt from problems, therefore the natural demand arises to handle quasi-
symmetric cases in a way to manage the greatest part of advantages fully
exploitable in perfect symmetry cases. Structural analyses may benefit from
a procedure relying on the connection prineiple [1, 2], providing for the quoted
advantages also in the quasi-symmetric case by aptly selecting the load vector
so that in any step of computation one has to do with a symmetric structure.
For the dynamic analysis of quasi-svmmetric cases there is, however. no exact
method available at present.
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A method will be suggested for the dynamic analysis of quasi-symmetrie
cases such that if a latent but close symmetry exists, it helps to recognize it.
permitting analysis of the structure as a svmmetric one. For an effectively
disturbed symmetry. the suggested method facilitates selection of the mechan-
ically dominant symmetry, to underlie a fairly close approximation.

2. Analysis of symmetrieal systems by utilizing the symmetry

This study will refer to linear systems or their matrix representations
for some coordinate seleciion.

b

1 Static analyses

In static analysis, 2 mechanical svstem may be described e.g. by the

tiffness matrix S of order n, and by generalized displacements g due to

o

o

eneralized load f. Hence

a0
=

Sq— f (1)

[E=]

The system is assumed to be symmetrie, there is a matrix @ — usually
with several alternatives — permitting transfer to coordinates y reflecting
symmetry conditions of the structure through traunsformation

a= Qy (2)

replacing, for instance, pair of the rotation-translation coordinates disrupting
the symmetry by a pair of translation coordinates. Since coordinates y already
refleet the symmeiry conditions of the structure, an order may bhe found
where every coordinate joins its counterpart in symmetry — provided n
iz even. A vector with this feature may formally be obtained from

y =Px (3)

where P is an aptly selected permuting matrix of order n. Coordinate trans-
formations (2) and (3) lead to

(P*Q* SQP)x — P+ Q*f (4)

of a form suitable to be joined by a non-singular matrix D constructed as
described in [3] such that transformation

D*(P* Q* SQP)D z — D*(P* Q*f) (

U1
~—

results in two independent systems.
Introducing notation T = QPD yields

T* STz = T*f (6)
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containing matrix T*ST, a diagonal hypermatrix with two blocks of exactly
halved size if n is even.

If n is odd. then one coordinate has no symmetric counterpart (it being
in the svmmetry plane): initially the pertaining equation can be considered
as to belong to any subsysten.

Provided the sysiem has several external symmetries — subsystem
svmmetries — the obtained, half-size problems may he further reduced.

The same procedure is deduced in [3] by the flexibility rather than by
the stiffness matrix. with no essential difference.

The actual selection relies on the compatibilits with the usual formula-

tion of dvnamic problems.

2.2 Dynamic analyses

The structural problem under 2.1 the dynamic problems of the form
T — s 7
Mq+-Kq-+Sqg=1 (M

can be assigned to, where the here introduced symmetric matrices M and K
are inertia and damping characteristies of the system. resp.. and ¢ is time.
Applving the same procedure as before,
T*MTz - T* KTz - T% 8Tz = T* {(3) (8)

For a system identicallv involving svmmetries of rigidity. damping
and inertia. matrix T selected as described above. primarily depending on
the order of coordinates y causes also Eq. (8) to decompose.

Iet us mention that the somewhat mechanical establishment of matrix
D in [3] mav be replaced by another method. For the treatment of vehicles,
in the chosen coordinate system, matrix ¥ is often diagonal, K and 5 are of
similar construction. since dampings are modelled as parallel connected to
elastic elements. No matter that the damping matrix often contains mor
of zero elements than the stifiness one. that is, from the aspect of procedure.
occurrence of cases s;; == 0, k;; = 0 for some subseript pairs i, j is irrelevant.

These items may be utilized in construeting transformation matrices
depending on the model parameters.

It is worth mentioning that to transformation matrices or transformed
equations mostly interesting physical interpretations may be assigned. since
models of lower degrees of freedom of the type (8) may hint to peculiarities
of the original problem. likely to remain hidden in the original form (7).
Remind that, provided the component transformation matrix (8) is non-
singular. then this is a similarity transformation with respect to the algebraic
eigenvalue problem belonging to the dynamic problem. that is. eigenvalues
do not change in transformation. only that coordinates of the eigenvalues are

obtained in the new system.
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Examples:
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As an illustration of those said above. let us consider the symmetric
vibrating system with four degrees of freedom seen in Fig. 1.

The displacement equation in the system of coordinates g;:
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In the selected coordinate system, the coefficient matrices of the displace-

ment equation do not decompose into independent blocks, however many

zeros they contain.

a) Utilization of svymmetry by transformation according to [3].

The coordinates being symmetric and needing no change of sequence,

and T = D. where
1 1
—1 1
D —
0 0
0 0

According to Eq. (8):

2m 0 0
0 2m 0
0 0 Jsfa*

0 0 0
2k + k)
] 0
R T
n 0

2(s; + s3)
! 0
N —2s,

0

0 = P = E (unit matrix)
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0 0
0 0
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2

a decomposing system where equations containing unknowns of odd subscript

do not contain such with even subscript. and vice versa.

b) Another separation possibility
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Be
1 —a 0 0 —I -1 1 1 17
1 a 0 0 —a a —a a
T = e and T¥ .= i o
I —a 1 —a 0 0 1 1
1 a 1 a 6 0 —a a

Performing multiplications specified in (8):

2m -+ my, 0 m, 0 Z
0 wmeJ. 0 S || & |
m 0 m, 0 EA B
L0 Js 0 Jo 4
9k, 0 00 ) "’
0 2a%k, 0 0 AR
Lo 0 2k, 0 50
0 0 0 2k, || oz
25, 0 o 0 | = R O A
: 0 2a*s 0 0 Sy alfo—fi ~fi—1s)
o 0 2, 0 5 1 | fLf
0 0 0 2d%sy 1| =, alfy —f4) R

again a decomposing svstem. but while subsystems trausformed in the former
way are stiffness and damping coupled in themselves. the latter method vields
subsystems acceleration-coupled in themselves but remaining independent

of each other.
3. Analysis of quasi-symmetric struetures

Solution of the symmetric case was seen earlier to require in final account
the performance of a congruent transformation where the transformation
matrix can be algorithmized even in the most general case. Existence of the
mentioned conditions is sufficient for the utilizability of symmetry.

3.1 Static analysis in quasi-symmeiric cases

In a quasi-symmetric case. the exact solution is produced in two steps:

-— Arbitrary restitution of symmetry by structural intervention; solution
of the symmetrical problem according to 2.1.
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— Symmetric and antisymmeltric modification of the artificially symme-
trized structure (coupling problem) so as torecover the original structure

at?last.
The essential of the procedure is seen in Fig. 2.
-1/2 -1/2
P
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Every step of the procedure has been developed and is actually achiev-
able [4. 2]. The computation method can be considered as convenient selection
of load vectors applied on the svmmetric structure, since the symmetry
disturbance of the given structure under a given outer Inad may be interpreted
as if the symmeiric structure replacing the quasi-symmetric one were acted
upon, in addition to the original load. by another. aptly selected external
equilibrium load.

3.2 Dynamic analysis

The fundamental difficulty of utilizing quasi-symmetry in dynamic
cases is due — to our knowledge — to the missing generalization development
of the coupling problem [5] for general cases. As a result, ulterior correction
of modifications to restore the svmmetry cannot be performed.

Earlier, the static analysis of quasi-symmetric structures consisted in
an approximation omitting the step of modification. Essentially the same
method will be followed now, except that as far as possible the slightest modifi-
cation likely to result in a symmetric system will be sought for.

There are several wavs of svmmetrization:

a) The considered problem is subjected to physical-type modifications
such that the equation system in form (7) or (8) becomes a decomposing one.
In the simplest case springs, masses, dampers are omitted or assumed, type
or number of connections is modified ete. In general, this is a rough interven-
tion causing the model to less truly simulate the examined system, to specialize,
to reduce the number of adjustable parameters. the obtained results are
misleading without correction. Even essential pecularities of the examined
system were found to vanish in this kind of symmetrization.
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b) Rather than to find the basis vectors, congruent coordinate trans-
formations, simple to construct, will be introduced where though the equations
do not decompose but there are few coupling terms, and of low value compared
to the elements in the main diagonal of the corresponding matrix. Omission
of the remaining coupling terms obviously causes the system to decompose.
It is equally expedient to but slightly modifyv the equations before transforma-
tion e.g. by aptly completing them so that after transformation again a de-
composing system arises.

The latter procedure means a smaller intervention in the system than
that under a) since number and range of the parameters remain the same as
in the original problem, the essential of the modification being the slightly
biased reckoning with some interactions of the system along some coordinates.

4. Estimation of approximation errors

Errors of the numerical solution values arise from two sources: finite
arithmeties, and biassing by the model. Influence of finite arithmetics will
not be considered in detail, only mentioned that symmetric and minor problems
can mostly be solved more efficiently and accurately than the original quasi-
symmetric problem. One may wonder if a slightly inaccurate numerical solu-
tion of a large-size, quasi-svmmetric. theoretically exacter model is the more
advantageous, or a relatively more accurate and more reliable numerical
solution of smaller. theoretically less exact models — or of a symmetric model
of the original size but of lower accuraey. Thus. errors may be expected to
offset each other.

A natural demand is, however, to measure or estimate the errors pro-
duced either numerically or by model biassing. and their impact on the solu-
tion. Static computations involve the solution of linear algebraic equation
systems, so that the theorems below [6] suit error calculation. although the
actual error is sometimes overestimated.

Theorem A: If "A -GCj <TA1W then also €71 exists such that
AT

HA—C]| AP
1~ JA—Cl A

-1 C_IH -

Theorem B: Assume the equation svstem Ax = f to be unambiguously
‘ 1 .
solvable for x. For /| A—C <—]A——1’_’ then for an arbitrary g, also equa-
AT
tion system Cy = g can be unambiguously solved (see the previous theorem)
and the solutions differ by:
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{

ATY (A —C x + g —
A—Cil AT

In the following. matrices C and A will be considered as exact matrix
af the guasi-symmetric structural problem. and as coefficient matrix of an
aptly selected approximate symmetric problem. respectively.

Dynamic analyses involve the solution of both linear algebraic equations
(steady vibrations), and linear. differential equations with constant coefficients
(transient processes). Again relving on [6], a theorem will bhe presented for
the most delicate part of this latter problem. error assessment of the eigenvalue
problem solution. It should be mentioned a priori that it is practically not

sharp enough for a narrow delimitation of the real error.

c) A. Ostrowski’s theorem. Let us assume =igenvalues of matrices A
and €, hoth of order n, to be 2.4, ... .4, and g, ty. ... ., respectively.

Be
M= max | a;. ¢}

iijEn

, 1 3 <
0 = ——- g s G
nmg?g R

Now, for an arbitrary eigenvalue 7, of matrix A. at least one eigenvalue g,

of € can Le found. such that:

T n - 2) M A 1<k m

;/ — Hp

4.1 Example of applying error assessment in a struciural problem

Assume of a quasi-symmetric static problem
Sq="f

has led. using earlier described transformations, to an equation system of the

form:

8§ 2 =& 2 1 .
, ) ;
> 8 I ¢ (in compliance with the
L 4 1 z, 0 theorems ofexchange-
1 4 1 ability)
3 Zy

For ¢ = y = 0. coupling of main diagonal blocks vanishes, and the problem
requires the solution of only two. half-size equation syvstems, as against the
original, completely coherent system. Thereby a possible symmetric approxi-
mation of the original quasi-symmetric problem has heen obtained: let us
try to assess how close the solutions of hoth problems are.
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To be able to apply the presented theorems to this aim. let us consider
the coefficient matrix pertaining to the original (detailed) quasi-symmetric
case as G, the pertaining solution vector as y, while matrix of the decomposing
problem resulting from the selection ¢ = y = 0 be A, and the pertaining
solution vector be x. right-hand sides being common: f = g. This selection
is justified by the doubtless existence and easy calculablht\ of the inverted
of A (exactly this was the aim of the neglect: to obtain an approximate problem
easier to handle than the original one). A being a diagonal hypermatrix of

non-singular blocks.

Numerical calculations apply the Euclidean norm | !, although
theorems 4 and B are valid in any compatible vector — matrix norm [7].
Partial results needed for evaluating theorem B:
1
x= AT { == —[4, —1. -2, 8]
30

This error assessment can only be applied in the range & <1.65.

. e TSR .
inequality — 1/&% 4 v -/\043

the errer limit is function of ' 2'. some relevant numerical results are tabulated

in Table 1.
Table 1:

Leing imperative. According to the theorem.

el =1y A Xy x—y x]
0.1 0.141 0.020 6.5°
0.5 0.707 0.135 43, 7%
1.0 1.414 0.481 155.29,

As a conclusion. solution of the quasi-symmetric (exactly modelled)
problem can safely be replaced. within engineering accuracy. by the solution
of an artificially symmetrized (approximately modelled) problem. provided
perturbation (symmetry disturbance) does not exceed ¢ = |{y| = 0.1.

By way of checking, also the exact solution of the quasi-symmetric
problem has been determined, permitting to calculate the effective values in
the two last columns of Table 1 (Table 2).

Confrontation of results in Tables 1 and 2 shows assessment according
to theorem B though to much overestimate the effective deviation between
vectors x and y but in the case |e] = |y| — 0, the assessment accuracv
rapidly converges, namely the assessment theorem reflects the continuous
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Table 2:
gl= x——y
0.1 0.004 1.39,
0.5 0.011 3.59
1.0 0.043 13.99

dependence of the solutions from the coefficient matrix and the right-hand-
side vector.

This example clearly illustrates the possibility. in case of a suitable
organization of the static analysis of quasi-symmetric structures. of using
“sharpening™ error assessment formulae. fitting accuracy requirements of
engineering practice, thus. likely to offer decision criteria for reducing the
volume of calculations.

Let us notice that in the static case, exchangeability theorems specify
existence of the symmetry of the stiffness matrix, hence of the relationship
¢ = y. Decomposition depends on the existence of external svmmetry: in

the actual ease it is confirmed by the value ¢ = y = 0.

4.2 Example of applving error assessment for a dynamic problem

To the structural example above. dynamic problem. Eq. (7) can be as-
signed. considered. for the ease of treatment. to be of the form:

Eq -Sq=0 (9)

Differential equation (9) may be considered to have a solution describing
undamped free vibrations of the structure with the same stiffness matrix
as in the former example. provided the mass matrix has unit elements. This
is no essential restriction. since. obviously. the mass matrix is always svmmetrie.
positive definite due to phyvsical causes, thereby it can also be written in the
form LL*. where L is a non-singular lower triangle matrix: making use of
this decomposition. earlier symmetry conditions — if any — of matrix §
can be maintained [8]. while the mass matrix is transformed to unit matrix.

Similarly as in the static problem. also here it is attempted to decide,
without solving the quasi-symmetric problem (matrix C). whether resulis
obtained from the solution of an approximate symmetric problem (matrix A)
can be accepted as sufficiently accurate solutions of the original problem.

To solve Eq. (9). knowledge of all eigenvalues of the algebraic eigen-

value problem

1 '8 2 h,
1 R 2 8 h,
1 “r T v 4 1 hyl 0 (10)
_ 1 i 1 4 hy .

3 p.p. Transport 9/2, 1981
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is needed, therefore, it is attempted to apply theorem C) and to use eigen-
values 2y, 7,. A3, 4, of matrix A belonging to the symmetric case ¢ = y = 0
to approximate eigenvalues y,. p,, gy u, of the original matrix C. and to assess
the error.

421 Assessment relying on theorem C

Matrix A being a diagonal hypermatrix. its eigenvalues are readily
obtained:

furthermore:
M=8: 8= 277
32
thus:
. je - p | -
Ly — Upl < 48 {T} 1<k m-<4.
Results have been compiled in Table 3.
Table 3:
e= Jgp = |
0.1 13.50
0.5 20.18
1.0 24.00

The obtained assessment is useless, since eigenvalues of the approximate
problem are by one order less than the predicted errors. Table 4 contains
effective deviations of correlated eigenvalues. to that, however, also the
eigenvalue problem of matrix € had to be solved.

Table 4:
e=Y oyl Fo—iyl i hy—pgl Ap— ity
0.1 0.0012 0.0030 0.0033 0.0009
0.5 0.0300 0.0683 0.0768 0.0215
1.0 0.1218 0.2212 0.2568 0.0862
Results — and analysis of the error assessment formula — showed

this method to rather poorly assess effective deviations, imposing to find

another idea for an error assessment of merit.
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422 Eigenvalue error ssessment by lower and

a
upper limit approximation

The suggested method is safely efficient if all eigenvalues of matrix €
for the guasi-symmetric case are real and single. The condition of real eigen-
values is met in conservative mechanical ‘systems described by (9): in the
actual case, beside this, the second condition prevails: all eigenvectors are
single.

For a better understanding of the train of thought. let us expand the
characteristic polvnomial of matrix C in the example (introducing notation):

p(n) = [(8 —n)?— 4] [(4 — nf - 1] — ep(8 — ) (4 — n) (11)

Representing the independent part of the polynomial exempt from'
disturbances (¢ and y) as an (actually) fourth-degree polynomial (Fig. 3}
and, in the same coordinate system, the part depending on the disturbance :
as a quadratic function, then varying the disturbance value the part independ-
ent of the disturbance will be cut in different places. Projections of intersection
points on the 7-axis define the (exact) eigenvalues belonging to the actual
disturbance.

Do not consider the disturbance in the initial quasi-symmetric problem
as basic disturbance, referred to by a subscript 0 (g, v,). Remind that ¢ = vy
is not alwavs met in dvnamic problems, namely the structure to be modelled
may be a non-conservative one, but existence of the equality is not a condition
of applying the method.

plmd
!

~
-

[
s
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If in the actual case &, y, 7> ¢, 7 then half of the eigenvalues of the initial
problem will be approximated from below. and the other half from above.
Similarly. for £,v,< e, y, then all eigenvalues will be approximated {rom the
opposite side than in the former case. all in all. the modified disturbance
variation (g, y( ~ £,7, 7= &43',) according to the unequality e, v, <7 e, v &, v,
is a possibility to bilaterally approximate the wanted eigenvalues. Obviously.
provided ¢, v;—¢,7, — 0 accuracy of interception hence of approximation
fast increases, that is simply the reflection of the continuous dependence of
selutions on initial data. hence also this assessment procedure is a “sharpen-
ing’” one.

For ¢, and y, rather close to zero, zeroing one disturbance leads to a
decomposing, thus, ready-to-solve problem. Solution of the so-called “over-
disturbed”™ problem intercepting the eigenvalue. is, however, as difficult as
that of the basic problem. Nevertheless. determination of lower-upper approxi-
mate eigenvalues may be of importance for the solution of so-called synthesis
problems.

A familiar dyvnamic problem in design is to select free parameters of
a mechanical system to meet given specifications (e.g. stability). The solution
method is then usually serial analysis. when systematic overall examination

of a set of struectures iz applied to find the closest one or maybe just the

aceurate one — meeting the preconditions. In this case also the effect of
disturbances of the '¢,y, order can be reckoned with between strict lower
and upper lmits, so that eigenvalues of their approximations from below
and from above are examined in a miner part of the set of structures. while
in the greatest part, a one-sided (easy) approximation at engineering level

will do it.
Summary

In static and dynamic analvses. structural symmetry can be nsed for reducing the
volume of computations. In static analyses, quasi-symmetry can be reduced to a symmetric
problem. of reduced laboriousness. but in dynamic analyses it is only approximated. Now,
closeness of the approximation can be appreciated by error assessment relying on the disturb-
ance method.
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