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1. Introduection

One of the most important characteristics of the brake gear is the braking
ratio A. the ratio in percentage of the total brake-shoe force at the maximum
brake-cylinder pressure for a given vehicle weight. (See the simplified model
in Fig. 1.) Since the weight of a railway car changes as a function of the service
load. the braking ratio can be interpreted for different load values. With
inereasing 4, also the effectiveness of brake gear increases but this increase
is limited by wheel sliding. So the value of A is bounded from above by the
sliding of wheels and from below by the weaker hrake action and the increase
of stopping distance.

The braking ratio is generally determined by the designer so as to elimi-
nate the sliding of wheels even under unfavourable operating conditiens. But
if the braking ratio is chosen cautiously (i.e. its value is kept low) an unfavour-
able increase in stopping distance should be reckoned with. The foregoing
point to the difficulty of meeting the contradictory demands in certain cases.
Practical design recommendations give no method to determine the optimum.
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A probabilistic dimensioning method is required which takes the random
character of the friction coefficients, decisive for the braking process, into
consideration expected to determine the probabilities of both keeping the
stopping distance and of the wheel slide. Such a dimensioning method is
underlying the determination of the optimum braking ratio. The calculation
method to be described solves the outlined problem under simplifying condi-
tions. It is a new method for the design of railway brakes. This procedure
can be refined on the one hand, by involving further characteristies of braking
technique. and on the other hand, by taking comprehensive measurement
data of the encountered stochastic magnitudes into consideration.

2. Extension of the brake calculation meihod to the domain of
sliding taking the stochasticity of the friction coefficient
into comnsideration

If a railway vehiele is braked with constant brake-shoe force until it
stops. then. with a proper approximation. the following three cases can be
distinguished. depending on the magnitude of the braking ratio:

1. The wheel rolls until the vehicle stops.
2. The wheel rolls for a while from the beginning of braking. from that
point on it slides until the vehicle stops.

L2

. The wheel slides all the time from beginning of braking until the vehicle

The rolling motion of the wheel is simulated here by pure rolling (without
sliding) and the sliding by the full blocking of wheels.

For a given braking ratio to determine the stopping distance. knowledge
of three friction coefficients iz required:

a) Friction coefficient between the wheel and the brake-shoe: u,
b) Friction coefficient between the rail and the wheel in the state of

rolling (adhesion coefficient): 4,
c¢) Friction coefficient between the rail and the wheel in the state of

sliding: u,

The properties of these friction coefficients, the effects and variables
influencing these phenomena are discussed in 1], [2], [3]. Let us emphasize
that friction coefficients in question should be identified as random variables
on the basis of measurement experiences.

They can be given in the form of:

a

i = + ¢ — Ay,

' v+ b
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where: v is the momentary speed of the vehicle:
a.b.c are constants (See Table I);
Ap is the deviation of the random wvariable from its own expected
value. a random variable itself.

Table I
i : i 7 Modified formula N
1 ©35%  1Ld - 0.016 by Karvacky [1]
a V;,:i » 2.083 1222 1 0.13 (;.1 Kother’s formula [1]
0 U S R U— e
. 025 L4 006 0025 [3]

The variable du has zero expected value and its standard deviation ¢ is equal
to the standard deviation. assumed as constant, of the friction coefficient g
considered as normally distributed. to be justified in the following parts.
For practical calculations the value set of Adu is discretized as follows:
Aoy == * Ly
m

where: m is the number of equidistant division elements of the interval
[0. 1¢4] as shown in Fig. 2;
i is the parameter identifying the end points of division elements.
It takes its values from the sequence: — m. — (m--1),
-1.0.1. .. .. (m --1). m:
#y is half-length of the field of scattering [— 3¢, 3¢] of the random
variable pu.

The constant parameters of diagrams to he discussed were taken into
consideration with the figures in Table 1.

Constant ¢ marked with an asterisk includes the value of the brake-
shoe force per unit area (brake-shoe pressure); here it comes to 0 7 MPa,
belonging in our example to 60%, braking ratio.

For an arbitrary braking ratio 4 the corrected constant a is:

ﬂ*l °l

1
CV

The friction coefficients used in our calculations are shown in the dia-
gram of Fig. 3. together with the half-length of scattering fields u,.
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The stopping distance is known to be composed of two parts: basic stopping
distance and the additional stopping distance. In the following. only the basie
stopping distance will be examined, and caleulated by assuming the brake-
shoe force (pressure) being constant during the whole braking process. As
a first approximation. neither the vehicle resistance nor the effect of rotating
masses will be taken into consideration. These neglects are irrelevant to our
conclusions but the results will depend on less of variables and so they can

be surveyed more clearly.
The relationship for determining the basic stopping distance:

Fy Vmax
., 1 ¢ vdr 1 7 vdr
8] Py

S§=8, — 8 =——

r S
gA

In the formula the gravity acceleration is designated by g.

The first term gives the rolling distance S, the second term gives the

sliding distance S,. Speed r, at the instant of sliding is supplied by solving

for v the equation
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derived from the condition i, 2 K = u,, G (see Fig. 1}, provided A is constant.
This equation can be solved numerically after substituting the relationship

for the frietion coefficients.
The two terms of the basic stopping distance can be treated computeri-

ally identically. E.g. the solution for the first term is:

R NI NI CEE R D . :
el gl e
Y \ \ V=t
— (g3 — by ¢rqy) In(cpv + Qb)} J :
v==0}

where: ¢, = a, + ¢,. by,
a;. b;. ¢, are coefficients in the formula for the friction coefficient u,.

These relations with parameter { = constant permit an easy calculation of

the stopping distance.
Since. however, the friction coefficients are random variables, there are

at least two problems to be cleared:
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1. What is the distribution of the three friction coefficients affecting
the braking process and whether these distributions are affected by
any of the variables of important for braking (e.g. the momentary
speed of the vehicle).

2. Is there any correlation between the three friction coefficients as
random variables or they are quite independent from each other.

To answer thoroughly both questions. a lengthy investigation is required.
According to the evaluation of the experimental results achieved at the Insti-
tute of Automotive Engineering of the Technical University. Budapest, friction
coefficient y, shows a normal (Gaussian) distribution while the standard
deviations are not quite equal in different phases of the braking process.

No sufficient statistical information is available on the closer or looser
connection between the three friction coefficients. Informatively, the weather
factor, decisive for the braking process, affects identically all three friction
coefficients. But this problem still awaits to be cleared.

As a first approximation to this problem. calculations assume normal
distribution of each of the three frietion coefficients of constant standard
deviation for each coefficient and a strict fumetional relationship between
them.

The procedure involves the following particulars: Half-length of scatter
fields p, corresponding to 3¢ of all the three friction coefficients were divided
into m parts. After chosing parameter i. the random characteristics were
calculated with values belonging to 7 of the density functions of the three
friction coefficients.

Namely, plotting the realized value triads of the random variables u,.
Uiy U,s 00 axes of a spatial orthogonal coordinate system. In a general case.
the end points of the vectors determined by the coordinate triads form a dis-
crete set of points around the vector of expected values . o, and iy,
(Fig. 4). But applying the above-mentioned simplifying conditions, the points
are aligned on the straight line ¢ in dash-and-dot line. In terms of probability
theory: the three dimensional distribution is taken into consideration as
concentrated on the straight line e as a limit case.

Applyving the deseribed method to calculate the stopping distance,
using a parameter i = constant. it is found to vary vs. braking ratio according
to the curve in continuous line in Fig. 5. On the stopping distance diagram
three characteristic points can be marked out.

The sliding of wheels occurs at point A (just at the moment of stopping).
while for hraking ratios to the left from point A the total stopping distance
is covered by pure rolling (without slide). For braking ratios between A and
B the wheel is still rolling at the beginning of braking but it is sliding at the
end of braking. The stopping distance between A and B can be divided into
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two sections, covered by rolling and sliding. The stopping distance diagram
has a minimum at C. Up to C. the stopping distance decreases with Increasing
design braking ratio. it increases between B and C, and beyvond point B it is
constant. The curve connecting points A for different i values iz the limis
curve of rolling. the curve connecting points B is the limit curve of the total
sliding, while the curve connecting points C represents the curve of the mi-
nimum stopping distances.
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Calculating stopping distances with friction coefficient constants in
Table I. with different parameters i and assuming vmax = 60 km/h as initial
speed vields the set of curves in Fig. 6. Taking a fixed braking ratio 4. the
density function f(S) and the distribution function F(S) of the stopping
distance as a random variable. as well as its statistical parameters can be
determined (Fig. 7).

S5* on the limit curve of rolling is the stopping distance for the chosen
braking ratio. where the wheels just start sliding at the moment of stopping.
For this stopping distance. the probability of sliding can be marked on the
distribution curve: R(S*) = 1 — F(5*). And specifving a stopping distanece
S, the probability F(S,) of keeping this fixed stopping distance can be deter-
mined at S, of the same distribution curve. Both the R(S*) and F(S;) values
can be calculated as a function of the design braking ratio, to vield the diagram
in Fig. 8. The parameter of curves F(S;) is the specified stopping distance.
The two dominant properties of this set of curves are the following:

1. With increasing design braking ratio the probability of keeping the

specified stopping distance is first increasing, then. owing to the
increasingly more adverse effect of sliding. it is decreasing. At the
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vicinity of curve peaks — in a rather wide interval of braking ratios —
the probability value little changes. But the constancy intervals
decrease with shorter stopping distances.

[N

. The specified stopping distances belong to two categories. namely
those in a certain interval of braking ratios the specified stopping
distance can be kept practically at 1009, probability (referred to the
-3¢ range of the reference normal distribution) this limit is about
120 m in Fig. 7; and those where the probability of keeping the
stopping distance is below 1009, for any A.

3. Brake design method based on the probability of sliding and of keeping
the specified stopping disiance

Assuming a given specified stopping distance S, three cases of the rela-
rive loeation of curves R(S*) and F(S,) in Fig. 7 can be distinguished (Figs

9/1. 9/2. 9/3).

1. For a practically zero probability of sliding the specified stopping
distance can be kept at practically 1009, probability. This case is
that of low-speed vehicles, with no problem in brake engineering.
The design braking ratio can be anvwhere within the interval in thick

probabiity of keeping the specified stopping distance

g1 %100% !
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line, in limit case it is 4, involving stopping distance S;. S, is called
the design upper limit stopping distance.

. The specified stopping distance can still be kept at practically 1009/,
probability. but already sliding has a probability shown in the figure

o

in the braking section just prior to stopping. In this case, likelihood

and admissibility of service problems (damages) have to be considered.

There are three possible ways of solution:

a) Application of more complex brake-gear (e.g. rapid brake or anti-
skid device) shifting the curves R(S*) and F(S,) to a more favourable
position.

b} Reduction of A to reduce also the probability of sliding. But in
this case the specified stopping distance cannot be kept at 1009
probability.

¢) Specifying a longer basic stopping distance. In the limit case the
braking ratio corresponding to point -, is obtained. which involves
a stopping distance S, which can still be kept practically at 1000,
probability. Stopping distance S, is called the design lower limit
stopping distance.

3. The specified stopping distance cannot be kept at 1009 probability
and also sliding has a considerable probability. Of course, this case
is to be avoided from brake operation aspect. so in this case more
complex. high-power brakes should be used. This is the brake-design
problem of high-speed vehicles.

The design limit stopping distances S; and S, can be considered as the
extension of the notion of the theoretical limit stopping distance [1] to the
field of brake-gear design. But the two design limit stopping distances depend
on much more variables than does the original limit stopping distance. Their
calculation permits to outline the scope of brake engineering possibilities
available in the given case.

The values of S, and S, calculated under simplifving conditions are
shown in Fig. 10 vs. the initial vehicle speed where the curve of the limit
stopping distance [1]is plotted in dash-and-dot line completed with its scatter
field -+30.

At last let us note that often the value of the design braking ratio consid-
ered as favourable should be chosen from a determined interval. In practical
cases the probability of keeping the specified stopping distance increases with
increasing braking ratios, but at the same time the risk of sliding increases.
An aspect of setting the limits to the favourable braking ratio is the existence of
a critical value of sliding speed v, above that important damage (e.g. wheel
flattening to be repaired by turning) arises. It is also to be considered what
reserves are included in the specified stopping distance for the case of unex-
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pected events. Setting a range of favourable parameters is conditioned by

a close co-operation between the designer and the upkeeper. and by careful
consideration of brake engineering phenomena.

Summary

When designing the brake-gear of raillway vehicles the design braking ratio at the
maximum brake cvlinder pressure must be determined. With increasing braking ratio also
the effectiveness of brake-gear increases but this increase is limited by wheel sliding. The
harmonization of the contradictory demands is complicated by the stochasticity of the frietion
coefficients. This study approaches the solution of this problem by means of the methods of
the probability theory. Setting out from the probability distributions of the friction coefficients.
the probability of keeping the specified stopping distance. and that of the wheel sliding can
be determined as a function of the braking ratio. On the basis of the relative position of the
two probability curves yielded. the practical value of the braking ratio can be set out. The
design procedure outlined can be improved for the area of more difficult break-gear systems.
but a deeper digging out of the statistical properties of the characteristic friction coefficients —
first of all by means of measurements — is required.
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