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Introduction 

Devices in which some fluid in turbulent flow is mixed with another 
fluid are frequently used for mixing, cooling or any other similar purposes. In 
the flow of the air along the internal side of a cylindrical surface deserves 
special attention. One side of the cylinder is closed, the opposite side is open. 
The air mixture inhausted in the centre emerges through the edges of the ori
fice. Constructions of this type may be suitable to ventilate any room by 
introducing the ventilating air without any draught even in cases when the 
temperature of the fresh ventilating air deviates considerably from the tem
perature of the room to be ventilated. These types of air inducing anemostates 
- which conveniently may be called vortex chamher induction anemostates
mix room air to the ventilating air, this mixture is then introduced into the 
room to be ventilated. This way the draught sensation due to the considerable 
temperature difference between the input and the room air may be completely 
eliminated. 

In order to determine the temperature of the injected air the mixing 
ratio of the fresh, ventilating (primary) and the room air (secondary) must 
be known. 

The problem involved can be demonstrated by a simple example. Let 
us introduce fresh, cold air into a room at 26°C. The minimum temperature 
of the cold, fresh air to cool temperature of the mixture to + 15 °C is wanted. 
Let the secondary/primary mixing ratio er of the vortex chamber induction 
anemostate be unity 

(1) 

The 'premissible minimum temperature t1 of the fresh air is obtained from the 
temperature equilibrium condition 

tl = (er + 1) . tout - rp • troom' (~) 
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By substituting 

i.e. the minimum temperature of the fresh, ventilating air should be at least 
+4°C. ' 

The example discussed clearly indicates the importance to know the 
mixing ratio in specifying the temperature of the fresh, ventilating air. In 
order to discuss the method of calculating of the quantitative relations let 

z 

Fig. 1 

r v=o u=O 

Fig. 2 

us investigate the flow produced in the vortex chamber. Fig. 1 depicts the 
turbulent chamber indicating the input and the output flows. Let us fit the 
chamber, shown in section in Fig. 2 to a cylindrical co-ordinate system. Assum
ing the flow in the vortex chamber to be of cylindrical symmetry it is enough 
to trace one half of the chamber. Accordingly the flow of cylindrical symmetry 
will be investigated in the cylindrical co-ordinate system r, e, z. Fig. 2 showing 
also the character of the flow clearly demonstrates that the inflow of the 
secondary air may be accounted for by the injection resulting from the consid-
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erable difference in the peripheral velocities between primary and secondary 
air masses, consequently investigation has to take the frictional flow at least 
with its peripheral flow component into consideration. 

The problem may be solved by the Navier-Stokes equations [1], [6] 
with the assumptions and simplifications below, interpreting velocity compo
nents according to Fig. 3: 

v 

t. 

Fig. 3 

1. the flow is without friction in the directions z and r; 
2. in direction e the air flows with friction; 
3. the quantity u is of the type u = f1 (r, z), and 
4. the quantity v is of the type v = f2 (r). 

With these assumptions the Navier-Stokes equations take the following 
from [6]: 

ou ou 1 op 
u-+v-=---

oz or e oz 
(3) 

ov w2 1 op 
v---=---

8r r2 e oz 
(4) 

v-,-=(vt+v) --,----. ow I WV [ 82 
W I 1 aw w ] 

or r 8r2 r or r2 
(5) 

The continuity equation has the following form: 

8(rv) + 8(ru) _ 0 -- ---
or oz 

(6) 

Calculations procedure of the quantitative relationship 

The knowledge of the distribution z = H of velocities u would be enough 
to calculate the quantitative relation. However, this calculation postulates the 
knowledge of the pressure distribution, but it is rather difficult to determine. 
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The simplifications used allow a relath-ely simple calculation of the peripheral 
velocities. Consequently the quantitative ratio can be calculated by determin
ing the peripheral velocities taking also the moment of momentum theorem 
into consideration. 

Fig. 4 

According to Fig. 4 the following reasoning appears to be justified. Since 
in the experiment the input is without rotation in the range 0 < r< Rh' 
z=H: 

(7) 

where (wR) and i1 denote average values ·within the range Rh < r < RI' 
In Eq. (7) on the end plate of the vortex chamber the friction considered to 
he negligible. 

and 

it follows that 

and one finally has 

rp = W;!I _ 1 
(wR) 

According to Fig. 4, the emergent momentum is 

eu 2 r2 nw dr 

(8) 

(9) 

(10) 

(11) 

and the average emergent momentum for z = H in the range Rh < r < RI: 
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R, 

(wR) = _2_J't __ f wur- dr 
(1 + rp)Qp 

RA 
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(12) 

From the above reasoning it follows that if for z = H the values of w can be 
calculated, and an approximation ofuis known in the range Rh < r < R t (wR) 
and rp may be obtained from Eqs (11), and (12), respectively. 

Calculation of the peripheral velocity 

Let us investigate the possibility of calculating the w values and deter
mining the relationships between the individual velocity components. The 
results of experiments on spatial velocity disribution according to G. Gaulier 
[4], [5] using a DISA CTA anemometer enable to approximate the values of 
the velocity components in equation form: u = (ar2 + b) z/H in the range 

z = H, Rh < r < Rt. 

R, 

9: r 

r-----r+r~------~-

Fig. 5 

The constants a and b are found from the boundary conditions (see 
Fig. 5): 

(13) 

With these values 

u = Ut (r- _ R2) ~ . 
Rr-R~ h H 

(14) 

The unknown value Ut may be eliminated by expressing u in terms of the pri
mary and secondary (Qp and Qs) air masses in z = H. 

2 

R,I 

Qp' + Qs = f 2 mu(r) dr, 
RA 

(15) 
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Substituting: 

RI 

Qp + Qs = Qp(l + rp) = f 2% U 1 (,-3 _ R~ r) dr 
Ri- R~ 

(16) 

Rh 

By interpreting the quantitative relationship Qs/Qp = rp and, solving the 
integral applying (14), Eq. (16) results in: 

U= 
2Qp (1 + rp) 

%(Ri - R~)2 

z 

H 
·(r2 - R~) . (17) 

Since u and v must satisfy the continuity equation the distribution of v can 
be determined from the assumed u value. For this purpose one has to substitute 
Eg. (17) into (6) and solving the differential equation which for v is homoge
neous and linear, we obtain: 

c 
v=--

r 

Qp(l + rp)(r3 - 2 R~ r) 
2%H(Ri - R~)2 

(18) 

In the above equation C represents the constant of integration, Rh is unknown, 
but can be determined from the follo·wing boundary conditions: 

v = - -_Q..:;.P,,---
2.%RIH 

(19~ 
r=O v = 0 . 

It follows from the first condition that C = o. The second condition yields: 

(20) 

from which Rh can be determined. 
The relationships obtained permit to determine the significant radius Rb in 
Fig. 2. Obviously Rbis the radius where v vanishes. From this condition one has 

(21) 

According to this approach, there exist points where components of u or v 
the axial or radial velocity change sign. Roughly, r = Rb may be said to 
represent the central line of mixing, whereas r = Rh in z = H separates the 
fluid elements emerging from or entering the chamber. 
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With the approximation obtained for u and v Eq. (5) can be solved, bear
ing in mind that the flow is absolutly turbulent, consequently the viscosity 
cannot be considered as constant. If the value of the turbulent viscosity is 
accounted from experiments, and [2]: 

Vt ~ V • (22) 

Eq. (5) takes the form: 

v dw +~=Vt{d2W +2- dw _~}. 
dr r dr2 r dr r 

(23) 

According to DISA stream measurements the peripheral velocities increase 
monotonously, the sign of the derivative of the velocity is always positive. If 
the value of the velocity derivative with respect to r is not zero on rearranging, 
in the range Rh < r < RI the following differential equation results: 

d2w 'vdw dw w Eo' v w -' =---+-+-. 
tdr ')It rdr", r ')It r 

(24) 

The boundary conditions are 

(25) 

Consequently the solution reduces to a boundary condition problem. 
In the differential equation denotes Vt the turbulent viscosity, its value 

can be determined by experimentally with a DISA anemometer. The experi
mental evaluation of the turbulent viscosity may be conveniently carried 
out by means of Eq. (24). Nevertheless some viewpoints must be thought of 
when evaluating the point where v vanishes. At this point the 'lit value can be 
defined only if at the same point also the value 

d2 w l' dw IW --+~ ____ I-
dr2 r dr r2 

vanishes, and the indetermined term has a finite value. 
According to investigations with the Bernoulli-L'Hospital rule, the 

turbulent viscosity can be defined also for the point wlIere v vanishes. 
The boundary condition problem represented by Eqs (24) and (25) was 

solved by means of the relaxation method [3].' 
As a calculation example see Fig. 6. 

2* 
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w(m/s) 

6.0~~---4---+---r--~ 

4fJ ~-\--l---+-*--+-

2.0 f----j---t----J'-l---r---l--

Qp =520 m'/h 
X =110 
Pl=105Pa 

--- calculated 
-- measured 

016 018 020 C;:Z 024 r(m} 

Fig. 6 

An expression to calculate the quantitative relationship 

Let us attack now the quantitative relationship mentioned under 2. 
With the aid of the approximative equation (17) Eq. (12) can be reduced 

to a simple form: 

(26) 

Putting (26) into (ll) and taking the results under 3. into consideration 
results in: 

(27) 

suitable to determine the quantitative relationship. The computations were 
carried out with a program written in BASIC on the W ANG computer of the 
department of Fluid Mechanics Technical University of Budapest. 

Summary 

Devices in which some fluid is mixed with another fluid in a vortex chamber are fre
quently used for mixing, cooling or any other purposes. The author shows how important it is 
to determine the mixing ratio of the primary and the secondary fluid. The author recommande 
a method to computate the mixing ratio, by solving the Navier-Stokes equation. The turbulent 
viscosity was taken from experiments. The above has been illustrated with an example too. 
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U 

V 

T, 0, Z 

RI 
Rh 
Rb 
Qp 
Qs 
v 
vI 
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peripheral velocity 
axial velocity 
radial velocity 
cylindrical co-ordinates 

Symbols 

half value of the lower orifice of the chamber 
co-ordinate value at u = 0 
co-ordinate value at V= 0 
input (primary) fluid flow 
secondary fluid flow 
Newtonian viscosity 
turbulent viscosity 
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