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1. Intreduction

With the help of the stochastic model described in this paper the beha-
viour of storage systems controlled by inventory strategies (s, S) and (S, S)*
can bhe described and evaluated. Analysis of the behaviour of these systems
can be accomplished on two different levels depending on whether the demands
or inputs unsatisfied because of the unsatisfactory stock-level and capacity
of the storage service systems will be rejected and “lost” or, in the alternative
case, the system has a ““memory’ and rejected demands and inputs accumulate
into waiting queues.

Our investigations carried out on the basis of the results given below in-
volve an integration and extension of the possibilities offered by inventory
control theory and storage-technological investigations. They indicate that an
inventory control theory which reflects changes in the stock-level of the store
only in a highly general way is rather less suitable for the description and
accurate understanding of those complex material and information flows that
*‘go on” in a particular storage system with its actual technological conditions.
The results obtained by inventory control models are at variance with the
actual state of affairs mostly because the capacities or occasional failures of
the involved input and output service systems are ignored.**

As the integration of these factors into a model would require a much
more complex inventory theory, it seems more suitable to construct system
models which are sufficiently general, account for the ‘“‘internal” processes in
the store and, through an extension of storage-technological investigations,
are able to take into consideration the influence of particular storage-techno-

* More exactly, the inventory policy called “bringing the level up to level S (strategy
(S. S) hereinafter).

** Of course, this fact does not diminish the enormous significance of inventory control
theory in drafting the stock-building policies of a company, in preparing decisions of stock-
building and in outlining optimal strategies in the course oflarge-scale stock-building investi-
gations.
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logical blueprints on the whole storage system. The complex model (algorithm)
presented in this paper is (1) time-dependent, (2) controlled by the stochastic
flows of demands, (3) contains “memory” (waiting queues) and (4) feedback
(inventory control). Granted sufficient and suitable practical information, it
can be used for a realistic description of the *“life” of the system with respect
to the influence of the inner processes of the store on its behaviour.

The application of the model and the algorithm can have a special sig-
nificance in planning aspects of control and system behaviour of high-storage
systems. The model applies to these aspects since it describes the dynamic
behaviour of the system on the basis of a previous estimation of the basic
parameters of the store such as the capacity of the store, the capacity of its
service systems and the characteristics of its inventory control strategy. The
results of the complex model can be applied even in the automated control of
storage systems, thus providing possibilities for the permanent development
of storage sytems,

2. Characteristics of Inventory Comtrol Storage
System Behaviour

The notion and functions of storage systems, the basic questions of their
behaviour and “conduect”, the model constructed to investigate the behaviour
of the system and, also, the principles of constructing such a model were discus-
sed in our previous papers [16] [17]. In the following we discuss only those
notions and questions which are necessary for the investigation of inventory
control storage systems and for the evaluation of their behaviour.

The behaviour of the inventory control storage system (viz. the canges in its
characteristics in time) is determined by the characteristies of the information
and material flow in the supplying and consuming systems, by the chosen
inventory control strategy and its parameters and by the changes of the
store’s own abilities (Fig. 1).

The (external) functioning of the storage system means that the store takes
care of the appropriate satisfaction of emerging demands by a continuous
control of stock-level according to a certain stock-building policy. This is
achieved by giving an order which is either dependent on stock-level or constant
in (generally) determined periods of time depending on the inventory strategy
and its parameters.

The (internal) functioning of the store can be interpreted as follows. The
ordered amount of goods (input flow of materials), that can be delivered “at
once™ or ‘““protractedly”,* during several phases of time, reaches its appointed

* This is roughly synonymous with the term **periodical input”; see [9].
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storing place (according to some plan of indoor arrangement) through the in-
put service system. The output flow of materials controlled by the flow of
demands leaves the store through the output service system according to a
certain output strategy.

Demands of custormer system

- Reject”
A
Information on replenishment
K]
Supplier ; Custormer
Storage systern system
Information Information
on on
arrivals releases
‘(/
Arfg\nls Output
m of
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Storage system in its relation o the flow of materials
and  information

Fig. 1. Storage system in its relation to the flow of materials and information

The input and output flows of materials are limited by the throughput
capacity of the service systems. The throughput capacity depends on the
capacity and reliability of the service systems and also on the output and
indoor-arrangement strategies applied. Therefore in our model throughput
capacity is considered as a random variable. In the model we assume the ser-
vice system to be divided into two independently functioning systems viz.
the output and input system. If this is not the case, the available capacity
is divided between the input and the output systems.* (with regard to length
of waiting queues and the level of stock) by the service strategy [17], but the
probability distributions of the capacity divided between input and output
tasks are assumed to be available from the service strategy.**

Our model of inventory control storage system behaviour discussed in this
paper takes into consideration the probability distribution of service system
capacity (the problems involved in the definition of the probability distribu-

* From the viewpoint of simulating storage system behaviour, the assumption that
there is an output system different from the input service system can be either fully justified
(e.g. stores with silo type storage system) or partly justified (e.g. specific — in German termi-
nology: Komissionierlagern — stores) or quite frequently it can be considered a good approxi-
mation (e.g. throughput stores).

** Generally, this can be simulated by giving a random variable that controls the input
and output intensity values in particular phases. Our investigations concerning this method
(which are based on the most general strategy according to which service strategy divides the
given value of the entire service capacity between the input and output processes in proportion
to the input and output queues, on the basis of the actual level of stock in a given phase
and the holding capacity of the store respectively) see in [17].

5 P.P. Tranep. 5/2
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tion of capacities are discussed in [10]) and thus describes the internal “life”
of the store, viz. the effect of service system capacity (indirectly, of its internal
functioning) on storage system behaviour. After the integration of specific
inventory control strategies into the model. there is a possibility to construct
“memory-type”* models, as a further specialization of model [16]. In this
model the system “remembers’” the information concerning demands left
unsatisfied because of the unsatisfactory level of stock and capacities, and
attempts to satisfy them (the emerging queue of demands) in subsequent
phases. (From the viewpoint ¢f queueing the consumer system is a ““patient cus-
tomer”’.) The model describes the characteristics of emergent input waiting
queues that arise because of the unsatisfactory level of storage and capacity
of the service system.

3. Practical Problems of The Application of Inventory Comirol Medel and
The Place of Inventory Control in The Description of Storage
Systems

Discussions of inventory control models have brought important results
which are widely applied in the organization and planning of various economic
processes. Models applying ordering strategics of (s, S) and (S. S) types can
be considered the most important and most widely known,

Investigations based on inventory control models and on the stochastic analysis of the
dvnamic changes of the stock are carried out to determine optimal strategy parameters in case
of which the overall cost computed with respect to the respective costs of storage, ordering,
and penalty on shortages, etc. is minimal.

The system model to be discussed here uses a different approach and
concentrates on problems of a different nature. It attempts to describe storage
system behaviour in a more comprehensive way. Our task is to construct a
model which describes inventory control storage system behaviour with respect
to the capacity of its service system and the effect of input and output queues
on the behaviour of the system. In the case of the above mentioned integrated
description of storage system behaviour that takes into consideration techno-
logy and the flow of demands and of materialz as well, the simplifying approach
of models (s, S) and (S. 8) often cannot be applied.

This is shown by the fact that the amount of repeat order goods (which usually arrive
*at once”) is usually unlimited. So. in the optimal case even those repeat orders are permitted

which would be either impossible to store or would require a service system with an enormous
prohibitive capacity.

* Two tvpes of storage system models can be investigated according to their type of
“memory”’. Models with restricted or unrestricied memory can be spoken of. In case of the
former, “restricted” means that the store is no lenger able to remember the input quantities
of materials and the queceing demands beyond a certain level Q (these demands “get lost™).
Obviously, the latter type has no restriction of this sort.
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According to inventory control model approaches, this means that storage costs which
obviously include investment and other continuous costs of the service system are not constant,
(as these models assume them to be), but depend to a great extent on the parameter values
of inventory control strategies.

These suggest that. in accordance with the approach and modelling
principles [16]. inventory coutrol strategies (in our case, strategies of the
(s. S), and (S, 8) type) should be integrated into the general model of storage
system behaviour. Thus, our primary aim is to integrate the “black box’
approach of inventory control and “dam’ theory and, on the other hand, in-
vestigations of storage-technology into a unified whole and, by a consideration
of input and output waiting queunes and the particular inventory control
strategy involved, to describe storage system behaviour and make it suitable
for evaluation.

4. A Stochastic Model of Inventory Control Storage System Behaviour

4.1. Conditions of Simulating **Memory-type’” Inventory Conirol Storage
System Behaviour

In the model, the characteristics of the behaviour of a “memory-type”
inventory contro! storage system which functions on the basis of strategies
(5. S) and (S, S) are the following:

1. The behaviour of the system in relation to time is investigated in
discrete phases,

2. The system receives deliveries from a supplier system at a frequency
and in a quantity determined by the inventory control strategy involved.

3. Orders are given by the inventory control strategy on the basis of
the ““abstract”™ level of stock at the beginning of each phase when the level of
stock reaches level s (in the case of strategy (s, S)), or in every T(T>1) phase
(in the case of strategy (S, 5)).In case of both strategies the system orders an
amount of materials which makes up for the difference between level S and
the “abstract” level of stock and this amount of materials is delivered by the
supplier system by the end of each phase. (The case of so called “protracted™
deliveries which is a better approximation of actual processes can also be in-
corporated into the model.) [9]

* By “abstract” level of stock a modified version of the notion “level of stock™ is meant
as it is used in inventory control theory. Here it differs from the notion of actual stock in [16]
and in this paper so far. In inventory conirol theory the level of stock (K) is jointly deter-
mined by the level of stock “on the beoks™ (k), the amount of actual (physical) stock (f) and
the amounts of remaining unmet demands (m). Thatis, K = —k -+ m.

In our case the abstract level of stock is jointly determined by the emerging and queue-
ing demands or inputs in the phase concerned and the actual level of stock. The difference
between these two approaches is not very significant if the length of gueues is significantly
smaller than numbers s, S in the strategy (which is a requirement for *good” stores).

3

5
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4. In each phase the system receives demands from a consumer system.
Absence of demands is considered as a 0 amount of demands.

5. The storage system is assumed first to receive the materials arriving
from the supplier system in the given phase and the input waiting queue that
remained from the previous phase “to the best of its abilities™, that is, to the
extent it is made possible by the level of stock, the capacity (and. also. the
capacity of the input service system). Then, by the end of the phase, the system
satisfies the total amount of emerging demands during the phase, that is, the
demands that arrive in the phase and the waiting queue of demands unmet in
the previous phase “to the best of its abilities™ (that is. to the extent the level
of stock and capacity make it possible). (This condition can be met by a suitable
choice of phases.)

6. The storage system does not release more materials than required
by the demands and the amount of materials in excess of its capacity, that is,
the amount that cannot he received because of the level of stock of the moment
and capacity. is “compelled to wait™.

7. In our model of storage svstem behaviour, level of stock and the
output amount of materials in phase ¢ are considered independent of waiting
demands and/or emerging inputs in phases t—2, t—3, .. .etec., that is, earlier
states of the system can influence later states only through the present state
and the previous one.®

8. For a demand in excess of the level of stock in a given phase the store
releases its whole stock (a modelling condition widely used in literature).

4.2. The Definition and Parameters of Input and Output Queues in a Storage
Systems

Paper [16] discussed in detail the general (environmental. technological)
parameters of storage system behaviour.

All the system parameters together with parameters characterizing queues
given below are summarized in Table 1. From now on only the characteristics
of waiting demands and inputs will be concerned with. Let o (t) denote the
amount of waiting demands (the output queue of demands) in phase t in
arbitrary units of materials.

From the above it is obvious that o (¢) is a discrete random variable if
tis given. Its probability distribution will be denoted by

h(t) = P (o (t) = a). a=0,1.2...

* In the casze of Markov chains, earlier states of the system can influence later states
only through the present state. [13] (For example model [16] for the “reject-type” storage
system behaviour). In case of queues earlier states of the system can influence later states
only through the present phase and the previous one.

Accordingly, the “rejeci-type” model of storage system behaviour (with controlled
homogeneous and inhomogeneous Markov chains and stochastic automata) has no *memory”,
while in further cases stochastic models ““with memory™ can be spoken of.
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Let discrete random variable £* (t) denote the total amount of demands in
phase ¢ (that is, the sum total of the amount of waiting demands in phase
t — 1 and the demands emerging in phase £) in units of materials. Let pi(r)
denote the distribution of total amount of demands £* {z) as a discrete random
variable:

pi@) = P (E%(¢t) = I [=0,1,2. ...

Let x () denote the amount of materials waiting for reception (the length of
the input queue), in phase £, in units of materials. If ¢ is given, » (z) is a discrete
random variable and its probability distribution is:

&t) = P (2 (t) = b) b=10,1.2,...

Let diserete random variable * (¢) denote the total amount of input materials
arriving in phase { (that is, the sum total of the amount of materials unreceived
in phase t—1 and the input of materials in phase ¢) in units, Let

75(2) = P(*(t) = k) E=0.1,2....

the probability distribution of #*(¢).
The system parameters summarized in Table 1 are also given in the
model diagram of Fig. 2 that illustrates functioning of the system.
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Fig. 2, Parameters and model for storage system behaviour (of (S, §) type)



134 P. VARLAKI and A. BUDAT

4.3. A Formal Model for The Behaviour of Storage Systems with Strategies
(s. S) and (S, S) (in Transient State)
4.3.1. Transition and Output Probability Mairices. Probability Distributions
of Input and Ouiput Queues.

System behaviour will be described and evaluated on the basis of the
parameters of inventory control storage systems given and characterized in
Table 1.

To determine the evaluating parameters which characterize storage
system behaviour first we have to calculate the conditonal probability distri-
butions

Plh(t — 1) /h(t), I* (1)] and (1)
Pls (@) [ h(2). I*(9)] (2)

and probability distribution

P (o (1) = a) and (3)
P (x (£) = b) 4)

which characterize storage system hehaviour.

Here (1) denotes the conditional probability that level of stock will
be h(t - 1) in phase (¢ -~ 1) if the level of stock of the store in phase ¢ is h(t)
and the total amount of demands is I*(t), (2) denotes the probability that
s(t) will be the output amount of materials in phase ¢ if the level of stock is
h(t) in phase t and the total amount of demands is [*(¢). (3) denotes the proba-
bility of the amount of waiting demands (the length of output queues) accord-
ing to 4.2., while (4) gives the probability distribution of the amount of input
materials waiting for reception (the length of input queues) in phase 2.

First we have to determine two matrices consisting of conditional proba-
bilities for the explicite calculation of values (1) and (2).

Theorem 1%

The storage system is assumed to satisfy conditions 1—8 given in 4.2.
In this case the level of stock of the store depending on the total amount of
demands determines a transition probability matrix system. Choosing an
arbitrary stochastic matrix M(#) from this system, the matrix-elements will
be determined only by the distribution of random variables &(z), 7(t), 4;,(t)
and 2,y (t) the capacity C of the store, and the distribution of random variables

* Proof is not given in detail since it coincides with the proof of a similar theorem in [16].
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o(t—1) #(t—1) of the previous phase, and they will correspond to the pro-
babilities described in (1). Element My(t) of stochastic matrix m; (I) can be
determined as follows®

1-1 c
where my(l) = 3 0.d()17) + (i j11) 3o
z=0 2=l
z—0 z—i z—1 . .
S(u,+ 1) — (21‘3) (Zuv if j=0,0<i<C,z—i>0
v=0 \y=0 V=0 .
oo j—i+z—1
%[uf*-Hz T s~ T g W — ‘Zu WjisaTs 75 —wzuv)j\
d(i,f17) = . . .
if j=C,0<i<C,C—i+2z>0
J=i+z-1
Ujipr T r?—i-!»: — T itz Ujjpr ™ Z (Wi TS+ T it u,)
y=0
(5) 0 otherwise if 0<j<C0LiLC,j—i+22>>0
where

ri(e) = 2 Te—o(t) 8ot — 1) (6)

is the probability distribution characterizing the input amount of materials
in phase f that is the convolution of the probability distributions of both the
input queue of phase t—1 and the input amount of materials in phase t. The
probability distribution characterizing the input amount of materials ry(t),
depending on the strategies used, can be determined according to the following
theorem.

Theorem 2

If conditions 1 to 8 of 4.1. are satisfied, the probability distributions
characterizing the amount of materials ordered by the storage system at the
end of phase t—1, (that is, the input amount of materials in phase ) can be
determined by the following relationships: In case of strategy (s, S)

Sy (t—2)§‘p,(t—-1)rl csli—1) if S—s<k<SLC

N
c

>0

=0
() = S < 9 B 1) r¥ . — 1) if k=0 ‘h<<C
2 2 a(t=2) I pit— L) ripn(t—1) i S <h<s

+1i=0 [=0

0 otherwise (M

*In the above and following relationships the convention is applied that if a summation
or index becomes negative the formula is to be zeroed; for the sake of simplicity, the (phase)
variable “” has been omitted. For convenience’s sake the maximum length of Queues is
limited to C.
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or in case of strategy (S, S)

f e oo
l gt — 2) Zpit—1)rf s (t—1g) if 0<h<IS+C
— }i=0 =0
Tk(t) - '
t

0 otherwise (8)

Proof

From evident considerations based on the theory of probability and the
definition of strategies (s, S) and (S, S) it is obvious that if the *‘abstraet”
stock-level of the store (which is relevant from the point of view of repeat
orders) in phase t—1 is determined by probability distribution vector g*(t—1),
then the probability disiribution characterizing the amount of arrivals in the
next phase (the amount of materials reordered in phase t—1) can be calculated
with the help of the following relationships:

tgj;_k(t—-l)ifS—-sgkgS—}—C g1 0<k<S
c T;‘,(!) =
) =1 3 qie—1) f k=0 0 if k=S
k=s¥l
0 otherwise 9
in case of strategy (s, S) in case of strategy (S, S)

The abstract level of stock «*(2) can be calculated in our case by the addition
of the actual level of stock, the waiting and emerging demands and the arriv-
als. Thus, in this case, the probability distribution «*(¢) of g7 () can be deter-
mined by the convolution of probability distributions g,(i—1) r*(z) and p7(t)
with the help of the formula:

Sq(t—1) SpHE) o) f —C<h<2C,1—i+h>0

gi(t) = | i=° =0

0 otherwise

(10)

The theorem follows from relationships (6), (7), (8)* If the investigation of

* Drafting of the inventory strategy could be even more realistic if the determination
of the ordered amount of materials involved a joint consideration of the abstract level of stock
in the previous phase and the capacity of service systems. In addition to these the so-called
“periodical’” inputs could also be taken into consideration. A consideration of the statistical
characteristics of the capacity of the supplying and input systems that modify the flow of
materials, ete. would provide an additional means for expanding the model.
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the level of stock from the viewpoints of repeat orders is not accomplished in
each phase, in these phases probabilities r (z) will simplify according to the
relationship

1 k=0
0 otherwise,

r{t) = {

Theorem 3*

The storage system is assumed to satisfy the conditions in 4.2. In this
case the amounts of material released in each phase can be characterized by a
matrix N, (), the element n;(l) [¢] of which is equal to the probability in (2).
The stochastic elements of matrix Nj(z) (which also depend on the parameters
given in Theorem 1) are determined by the formulas:

8

ng(l) = 3 v.d(i.j 1, 2) (11)

2

il
)

where
w4 5‘ (wj—ri+ri_uy) if j—i>0and j<land I<zor
k=j—i+1
j—i>0andj<zandz<<I<C
fj—1>0,j=L1<2<C

FXIEE

=j—1 =j—i

d(i,j|l,z) =
1 Hj—1<L0,j=1<z<C or

j—i<0,j=5s<1

-1 ec
Z[Ur—irf—-i + 3 (uri+ T?-iuk)] +

Y=z Re==p—j+1

oe

3|3

\k=1—{ i

/
0 otherwise ifj—:>0 and j=12z-1

Here probabilities r(t) can also be determined on the basis of formulas (6),
(7) and (8).

Probability distribution g, (t) given among the system parameters and
already applied (implicite) in the previous theorem (whose elements are pro-
babilities characterizing the length of input queue z (t) in phase t), can be
determined by the following theorem.

* Proof is not given in detail since it coincides with the proof of a similar theorem in [16]
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Theorem 4

An element g, (3) of the probability distribution concerning the input
amount of materials waiting for reception in phase ¢ can be calculated if the
following recursive relationship is applied:

c C—h—1 n C—h =
’%%(t~1)[ % u,(t) %rﬁ(t) -+ %‘) ri(t) __%‘h u,,,} if =0
&i(t) = }é’qh(g —1) [cgl w,(8) rhos(t) + répes(t) 5‘ un(t)] if 6>0
=0 n=0 n=C-h
0 otherwise (12)

Proof

Let P(b/h, n) be the conditional probability that the waiting amount of
materials not received is b in phase ¢, if the level of stock at the “beginning” of
phase t—1 is h and the input capacity of the storage system is n (that is, either
the amount of materials exceeding level z is “compelled to wait”, or the amount
of the input materials and the level of stock exceed the capacity of the store).
Accordingly, conditional probabilities P (b/h, n) can be determined as follows,

n
> k) if =0 and C—h>n
i=o0
P (3] if 6>>0 and C—~h>n
P(b(2) | n(t), h(z — 1)) = th - 520 and €
k=0
r&_nenlt) if 5>0 and C—h<n
0 otherwise (13)

Applying the formula of total probability twice for distribution g,(¢) yields

o0

&) = 3 u,(t) S gt — 1) P[b(t) | n(2), h(t — 1)] (14)

n=0

from which, after having rearranged it, we get the probability distribution
in the theorem for the length of the input queue.

The statistical characteristics of the output queues of the system (that
is, the amount of waiting demands) can be defined according to the following
theorem.
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Theorem &

An element h, of the probability distribution of the amount w (¢) of
waiting demands (which corresponds to relationship (4)) can be calculated in
phase ¢ with the help of the recursive formulas :

h@%=é§wpdmﬂpﬂﬂ (15)
where -
Dl = 3 it — 1) mig, 0] (16)
and -

and pi(t) = 3 pialt)- ho(t — 1), where ny(l) [t] element of matrix Nyf) (17)
a==]

Proof

It is obvious that conditional probability w;._, (I) [¢] is the probability
that in phase t the system will release an amount (I—a) of materials if the total
amount of demands is I. This is the same as the conditional probability that
the amount of demands unmet in phase ¢ is a, if the total amount of demands
(demands emerging in this phase and the waiting demands from the previous
phase taken together) is [ in phase i.

The latter conditional probability distribution can be calculated with
the help of relationship (16) where stochastic matrix Ni(t) consisting of con-
ditional probabilities n,,(I) [t] can be defined on the basis of relationship (11).
The relationship to be proved can be obtained (on the basis of the probabilities
of the total amount of demands in the given phase) through the application
of the formula of total probability.

4.3.2. Transient-state System Behaviour and Possibility of System Identification

The results obtained so far permit to state the calculations for determin-
ing all the probability distributions of the system and, also, the evaluational
parameters derived from these distributions for any arbitrary phase.

1. The probability distribution vector r* (¢) in phase ¢ can be obtained
by the convolution of the probability distributions of input queue g,(¢—1)
of the previous phase

r*(t) = x(t) * glt—1)

The probabilities r; () belonging to the various inventory policies can be ob-
tained from theorem 2.

2. In each phase probability distribution vectors u(t), v(t), h(t) are
considered as given. Probability distribution vector of total amount of de-
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mands p*(¢) is the convolution of probability distributions of waiting demands
hy (t—1) from the previous phase and the demands p, (¢) in the present phase.

p*(¢) = p() # h(z — 1)

of theorems 1 and 3.

4. According to theorem 5, probability distribution Ny(f) of waiting
demands that remain by the end of the present phase can be defined on the
basis of stochastic matrix g (¢—1), the probability distribution of level of
stock h,(t) in the previous phase and probability distribution of the total
amount of demands in the present phase.

3. The probability distribution vector w () at the end of the present
phase and the probability distribution vector g (f) of the input amount of
materials in the phase can be derived from the definitions of stochastic matrices
M{z) and N(t) as the theorem of total prebability.*

e q’(r) = q"(¢ — 1) }(2) (18)
M(t) = §p;ﬁ<z> M,(2) (19)

) WTle) = a7t — 1)) (20)
N@ = S PHONG), (21)

6. The probability distribution vector of the input waiting queue at
the end of the given phase can be caleulated by theorem 4. The process deseribed
in 1 to 6 is shown in the formw of a flow chart block diagram in Fig 3.

Thus the distribution of random variables «(z), (). w(t) and » (t) that
ultimately determines storage system behaviour can be clearly defined by the
theorems and, for each phase, by the procedure deseribed in 1 to 6. That is,
an algorithm can he constructed to generate the values characterizing storage
system behaviour, if the distribution of initial stock is known and the length
of the queues is assumed to be zero in phase 0 (Fig. 4).

The storage system behaviour model can be made significantly clearer by
describing it with the help of operator formalism. (See the operator-connection
diagram in Fig. 5.) Operator formalism makes possible new kinds of investi-

_ gations as well. It gives an opportunity to investigate storage systems even if

the amount of a priori information is little. In such a case the store as a complex
object has to be identified. [11]

* (T) denotes the transposed vector (row iector) as defined in matrix algebra.
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The operators in the enclosed part of Fig. 5 determine a “‘system of
operators”. It maps the probability distributions of the demands (that is, the
“input signal”) into the “output signals”, that is, the probability distributions
of consumer demands satisfied. Thus, if 4, denotes the “system of operators”
in Fig. 5, the problem described above can be stated with the help of the
relationship W(t) = 4,;[P(t)] from the consumer point of view.

L | o =rlge=2 e pre-1] | b
r¥(t) = g (t—1) 3 r*(t)
!
2. p7(t) = p(t) % h(t—1)
3. Ny(t) = Njfu(t). v(t). r*(t)] } Theorem 3.
4. wl(t) = q'(t— 1) Nt)
5. h(t) = hiw(t), p*(t)] ] Theorem 5.
6. M(t) = M,fae), ¥(0). (0] } Theorem 1.
M(t) = ; pii(t) M(r)
; q'(t) = q'(t — 1) M(z)
N(t) == _IS.,' pi(t) Ni(t)
8.
wl(t) = q'(t—1) N(t)
9. g(t) = glr*(x). u(t) q(t — 1)] } Theorem 4.

Fig. 3. Algorithm in phase t for calculating storage system behaviour
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Fig. 4. Process diagram for algorithm of system behaviour
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Fig. 5. Operator-connection diagram of stochastic system behaviour model
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Table 2
Basic parameters for evaluating storage system behaviour
Stochastic process Notation cbfxt':zit?:i‘;ﬁcs Notation Definition
expected value Efa(t)] 2 ke gpt)
h=0
Inventory function
(stock level) o (t) | .
variance Dfe(t)] i E[at(t)]}2 qp(t)
’ h=0
expected value Elo(t)] Dla-hy(t)
a=0
Waiting demands
(output queue) o (1) f
| variance Dio(t)] i go {a— Elw(®)]}? hyt)
] “ -
expected value Elx(1)] 2 beg ()
b=0
Waiting inputs .
{(input queue) % (1) ! .
| variance Dix(1)] > {p— E[#(1)]}* gt)
! b=0
i

So far the information needed to formulate ‘“‘system of operators” A4,
was assumed to be a priori given. In case of a system already existing, the
system parameters are not known, so they have to be estimated for each phase
on the basis of observations and measurements. They will, then, define operator
AY which estimates operator 4, in the given phase. Now, in the framework of
the theory of identification our problem can be stated as W*(t) = A7[P(¢)]. [11]

For the identification of storage systems further investigations are
necessary; Table 3 shows, as an example of the favorable possibility of applica-
tion, a cross-dispersion function which indicates the closeness of the connection
between the series of demands and those of satisfaction and can well be applied
in the case of identifying non-linear objects. [11], [12]

4.4. Permanent State of The Behaviour of Storage Systems with Periodic or
Time-Independent Demands. Evaluation Problems Involved
4.4.1 System Behaviour in Permanent State

Most storage systems in practice have one thing in common, namely,
that in the short run the probability distribution of their capacities u(t), v()
can be considered as “independent of time”, or the distribution of demands
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Table 3

Indices and statistical characteristics for evaluating storage system behaviour

Name Notation Relationship
Functional reliability of demand FR,,(t) E[B(1)] . E[f ()]
satisfaction out EE@]° EE @]
Functional reliability of input FR,, (t) ] EE@W)] — E[x@®)] | El*)]—E[x()
processes " Eln* @] ’ Eln()]
Index of store capacity Ry (1) .E[;.E.(t_)]_
I
Expected value of storage “overflow” IS Lk
(because of insufficient store capacity) ER@®] | ﬁ%{" Ié; {an(®) re-ps(®) [C— B + K1}
Probability of “overflow” P, (0O) ge(t) [1—r¥t)]
Index of “overflow™ m (t) EL}#
Index of stock-level oscillation i(z) —]E)—FL—E—:-;%—
3
C
Entropy of inventory function Hie (1)1 hzv a (t) - log g (t)
Conditional entropy of “closeness” of S5
demandas :sdr;a%?sgactfogsene ° B[S ®)5(1)] lg § Pyt)ws(l) [t]log wi(l) [t]
- C -1
Normalized (cross-) dispersion function ‘ ,-=Z{) pi(®) [§ s vl [e7] —
showing the *‘closeness’’ of demands i 2
and satisfactions in time (the *‘rate Og (t+1.t) | 5’ g S(t-—'t)]
of stochasticity” of the system) : =)
1] [12 : :
[11] 12 3wttt |- Zewirl
L-s=o s-0 -1

in time is of periodic character. Thus a cycle consisting of phase “k” can be
defined, where the distributions described above are the same in every phase
k [16]. (This way seasonal factors can also be included.)

The character of the stochastic model (that is, the fact that the internal
and external functioning of the store can be described with an unambiguous
algorithm) and. also, certain heuristic considerations make it clear that if the
environmental effects deseribed above are periodic, the distributions characte-

* Conditional probability distribution vector wy(l;)[t = 7] in the relationship from:
willpit ~ 7} =gq{t— 1) M(t) Mt +-1) ... M@t +7— 1) N(t - 7). Its elements give the
probability that the amount of output materials will be s in phase (t - 7), provided demand in
phase t was [
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rizing the store will absorb the periodicity of the environmental effects in the
long run. Thus, the distribution vectors of each phase k will hardly differ from
each other. In the language of mathematics, if each element k of each series
of distribution vectors is considered, this series has a limit value. Several com-
puter experiments have been made by simulating the periodic behaviour of
the environment and consequently that of the system [16]. These experiments
have shown that the state of equilibrium (the permanent state of system be-
haviour) will set in after a relatively short time; the initial (not permanent)
behaviour of the svstem can only be the consequence of the “noise™ caused
by the fact that the distribution of the initial stock was other than the limit
distribution. (See Example).

Investigation of these special systems seems to be significant hecause,
for the evaluation of storage sysiems, in this case it is obviously sufficient to
investigate only the stochastic characteristies (indices) deduced from the limit
distributions. Independent and essential parameters are: the level of stock, the
amount of waiiing demands (length of output queue) and the amount of waiting
inputs (length of input queune) (See Table 2).

During the processes of planning and investigation of storage systems
the basic chavacteristics sueh as the capacity of the store, the probability
distribution of the input and output service systems, the parameters of the
Inventory strategy, ete. can be evaluated on the basis of a certain choice of
these parameters and. if necessary, optimalizing procedures can also be carried
out.®

4.4.2 Determination of Expected Value of Ordering Period for System Beha-
viour with Inventory Policy (s, S)

If the transition probability matrix and other statistical parameters in
a permanent state are known, other important parameters of system behaviour
can be calculated beside the given characteristics [5] [7]. For example,
in case of a storage system with strategy (s, S) the average ordering period
(which may extend over more than one phase) can be determined. This can
also be considered an essential characteristic of the system. For convenience’s
sake, a specific case will be presented where unmet input demands in a given
phase are rejected.

In this case the expected value of the ordering period can be calculated
as follows, assuming to have a periodic or time-independent flow of demands

* Besides the identificational investigations, incorporation of learning algorithms (Tsyp-
kin {15]) would be the most suitable means for the further development of the model. Thus
the learning processes of storage system behaviour could be investigated if the probability
distribution of the flow of demands is unknown and the essential svstem parameters would be
continuously corrected. (There is also a possibility of incorporating other methods) e.g. the
Bellman-Murphy adaptive algorithm operating with subjective **a priori” and *a posteriori®
probabilities (into our model [6]).

6 P. P.Transp. 5/2
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and the limit probability distributions g;[= Lim ¢,(t)], pi[= lim pi{(t)] of
toroo

[
the inventory level and total demand of costumer is known.

The conditional probabilities f;, (n) (n = 1,2, 3,...) that the level of
stock reaches s level after phases n or remains bhelow that, if the initial level
of stock was 7 and the order given was S—i have to be determined. That is,
conditional probabilities

- S

I

I
s @
R bo

[ ")
I

fo@) = Plo;>s(t=1,2,.. . ..n—1) o, = 0,1,... 5|z, = i];
(22)

are to be calculated. With the help of these relationships and the following
one the expected value of the ordering period can be calculated:

E(T o =1) = Z nfio(n). (23)
From this the average ordering period can be determined by the formula
s
E(T)= 3 xE[T |y =1] (24)
i=1

where probabilities x; of the levels of stock in the moment of ordering can be
calculated from the limit distribution ¢, of the level of stock and from rela-
tionship

(25)

on the basis of conditional probability.
Let us introduce the following denotations for the determination of

o r 0i...i...C—s
probabilities f;) (n). Let h; denote row vector h; [00 1 ... 0] and

e the column vector consisting of I —sonly. Let T', and T denote the matrix
resultinﬂ from the omission. of the first s-row and s-column of matrix M[=

= >p1 M,]in (18). (19). Probabilities r,=1 in matrix I'; if k = S—i and

7k=0 if k=S —1, V\hlleT, = lin matrix L'if k = 0 and r, = 0 if k = 0.
Furthermore, let I’y denote the matrix (where r, = 1 if k = 0; 0 otherwise)
of the last rows C—s and the first columns s omitted from stochastic matrix M.

Let us now define the corresponding probabilities f;, (n) (n = 0,1, 2. . .):
The probability that, after the ordered amount of materials has arrived,
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the store gives a repeat order at or below level s can be determined from the
relationship

fio (1) = BT, Tee . (26)
The probability that the order will be given in phase n (for a level 7 of stock
at the time of ordering) is

ffa (71-) - h?rirnﬁﬁroe. (27)

Applyving transformation z, the z-transformed probability f., () becomes:
ppiying p YJio

~) — o i W2, T x..—‘?_.‘——? <
Fio(s) = foll) 5 = R/ T 3" Te. (28)
n=2
With a suitable choice of = — if max [zm;;| <C 1 that is, m;; cannot be 1 in
matrix I (which is obvious) —. the infinite sevies is convergent and — by

applving the above relationship (26) — it will becorue
F, (z) =hiT,Tpez - 2h DI — zT)-! T (29)

where I — identity matrix.

Since the Markov chain is irreducible [16]. so E(T|«¢; = i)<{ oo, and
Fy, is differentiated by z where = 1, and, assuming that at the time of or-
dering the level of stock was 1, the average ordering period is determined by the
following relationship.

E[T|z,=i] =2 — b I,\Te - hITy(I — T)-1T(I — T)-1T,e  (30)

After weighting the expected conditional values on the basis of relationship
(24) and (25) the expected value of the ordering period is

s .
ET]=3 A [2—hITTee - hIT(I - I)'T(I — L) 1Te].

- 31
qn

i=1

M.,

)
Il
—

Further parameters other than the independent parameters discussed above
which can be important in the evaluation of stores are summed up in Table 3.
5. Example for Computer Investigations

The described model will be illustrated on a concrete arithmetic prob-
lem which emerged during the computer research on the system model with

6*




148 P. VARLAKI end A. BUDAI

strategies (s, S) and (8. S). respectively. Behaviour of the system has been
observed in 60 phases with the following parameters:

1. capacity C of the store is 10 arbitrary units of materials;

2. the initial stock comprises 6 arbitrary units of materials at a proba-
hility 1:

3. the probability distribution of the output serviece system has been
assumed to have a service system of 3 machines each of a capacity of 2 units
of materials /phase.* The duration between two breakdowns of a machine is
of exponential distribution with an expected value of phases 1/4 = 2, repair
time is also of exponential distribution. with an expected value of phases
1/u = 1/5. The probability distribution of the total capacity of “n™ machinery
system consisting of machines working simultaneously but independently
resuits from the following relationmship through a simple consideration of

combinatoric probability:

w (1) = v(t) = 3 (Ba) pR(t) P (1 — pa(r))H2, (32)

In this relationship the probability that a machine will be in working
order in phase ¢t is n = 2-4 in case of the output service system, while it is
n = 2-3 in case of the input service system, that is, pp(t). On the basis of a
formula of reliability theory the probability of a machine’s being in working
order in phase ¢ is determined by the following formula in case of exponentially

distributive periods of working order and repair:

p A L e Gt
P = p ‘ (33)

According to formula (Pn = u/7 + p); in a permanent state the probability
distribution vector of the capacity of the service system is v = [0.0008, 0.0068,
0,0834, 0.2245, 0.1578, 0.000, 0.5259, 0.000, 0.000, 0.000, 0.000];

4. distribution of the capacity of the input service system can be obtained
similarly to that of the output service system but we have assumed to have
3 handling machines instead of 4. In this case the probability distribution of
the capacity of the input system in a permanent state results from the cal-
culations above. u = [0.0001, 0.0008, 0.0142, 0.0820, 0.2336, 0.000, 0.1912,
0.000, 0.4781, 0.000. 0.000];

5. demands arrive in every phase according to the Poisson distribution
of 2 expected values.

* In a case more complex than the one deseribed in our example, where the capacity of
the individual machines is a random variable, the probability distribution of the capacity of
the output machinery system can be determined according to [10].
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6. orders are “given’ by the system at the “end” of every second phase (a}
according to strategy (s. S) s = 3; S = 8; (b)(according to strategy (S, S)
S = 8: T = 2). The ordered amount of materials arrives at “the beginning of
the next phase.

Table 4 (for illustration of computer research)shows the transition and
output probability matrices, the probability distributions of the most impor-
tant system parameters, their standard deviation and expected values on the
output list of computer jobs. Figs. 6 and 7 illustrate the changes in the param-
eter values of the behaviour of the svystem with strategies (s, S) and (S, S),
respectively. that is, the expected value and the variance of the level of stock
of the repeat-order amount of materials. of the length of queunes of arrivals
and demands. of the amount of cutput materials (demands satisfied), and of
degrees of functional relizbility ve. time. (Variance is marked by shading in
the diagram.)

Summary

The complex model (algorithm) constructed for the investigation of storage system be-
haviour is controlled by a stochastic flow of demands, has a memory (queues) and feedback
(inventory control). It can be applied for a realistic description of the “life” of the store with
respect to the influence of the internal processes of the store and the capacity of its service
systems if sufficient practical information is available. The application of the model (resulting
in an extension of inventory control theory and storage-technological investigations) can be
particularly significant in investigating, designing and controlling automated overhead high
— storage systems, Furthermore, it can be used in identifving the system through observation
and measurements, in lack of “*a priori” information.
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