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1. Introduction 

All statistical design methods rely on a statistical approach of expected 
stresses and material characteristics. Results are probabilistic, e.g. useful 
life at a given probability. 

Design load values and material characteristics are determined experi­
mentally, by statistical methods. Irrespective of the "quality" of the design 
method, results are much dependent on the accuracy or correct interpretation 
of design data. 

In the following, some aspects of material testing related to fatigue 
design will be considered. 

The fatigue characteristics of materials or parts are generally described 
by the W oehler curve. In individual cases a single result of program load testing, 
random load or service load fatigue testing series will be relied on. These tests 
have the common feature of consisting of observations made with some para­
meters kept constant, and the obtained sample is applied to predict e.g. the 
permissible stresses, the expected life etc. Deductions are based generally on 
small samples stressing the applied statistical method and the correct inter­
pretation of results. 

In the following, some mathematical methods likely of an exact interpre­
tation and practical evaluation of results from small samples (n < 50 to 100) 
will be presented. 

2. General considerations 

In processing the test results - considered as a sample taken at random 
from a population characterized by some distribution function - parameters 
of the assumed distribution function are estimated to draw further conclusions. 

2.1 The type of the distribution function to be assumed cannot be unam-
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biguously d.etermined from the available, generally small samples. Thus, 
earlier tests and theoretical considerations should be involved. 

Based on large-sample· fitting tests [14] and some theoretical considera­
tions [4], in general, the Weibull distribution (ty-pe III extreme value distribu­
tion) is accepted. 

In certain domains the lognormal distribution has been found to truly 
fit test data. Simple of handling, this type of distribution is widely accepted 
[2] [3]. 

The selection of the initial distribution function is of importance from 
two aspects: 

2.1.1 Possibility of extrapolation for low probabilities or ranges not 
covered by the sample (e.g. probability range 0 to 0.1; 0.90 to 1 upon a sample 
of 10 elements). 

2.1.2 In case of small samples, the features of statistics for estimating 
parameters (distribution, variance etc.) are much dependent on the selected 
model. (This fact is less important for large samples subject to the asymptotic 
theory.) 

2.2 The parameters of the applied model are estimated by statistical 
functions of the sample elements. These functions of random variables are 
random variables themselves. 

Point estimation procedures assign a single value to the estimated para­
meter. They contain, however, no direct information on the degree of their 
fluctuation, or on the statistical reliability of the estimation. Neither the 
effect of sample size can directly be appreciated. 

Rather than a single value, interval estimations give an interval (or 
range) for the parameter that is within the range at a given probability. A 
one-sided lower confidence limit gives a lower estimation at a prescribed proba­
bility. The interval width is characteristic of the estimation accuracy, directly 
concludes on the reliability of the statement hased on the estimation, or on 
its uncertainty. Effect of increasing the sample size can exactly be evaluated. 

Interval estimation procedures of the lognormal model based on the 
Gaussian distribution are easy to obtain [15]. In the following the case of the 
Weibull distribution will be discussed. 

3. Estimation procedures hased on the Weihull model 

The distribution function of the random variable ~i (i = 1 ... n) of 
W-eibull distribution can be written as: 

P(~ < x) F(x) = 1 exp _ 0 
{ (

X - X )b} 
6 

(1) 

here: b >0 shape parameter, 6 >0 scale parameter, xo>O location parameter. 
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In the most general case, all three parameters are estimated from the 
sample. In case of small samples, the method of moments [1] is.rather un­
certain, because of the estimation of the slope. Maximum likelihood equations 
are only regular for b > 2, hence they are impractical as a rule. 

The most familiar method consists in estimating para~eters by graphic 
plotting ([3], [4]). In this method, some plotting position Pi is assigued to the 
ordered sample elements xi,n (e.g. Pi = i/(n + I) is th~expected value of 

F(xi,n) [13], its mediane [5], or Pi = (i ~ )/n etc.) Plotting the correlated 

values on a Gumbel probability paper [4] or - after proper transformation -
in a log-log refereuce system [16], the smoothed curve, fitted to the poiuts 
gives the estimation of the distribution sought for. If the points fit a straight 
line, Xo = 0 can be accepted as estimation for parameter Xo' Estimations for 
band /j are given by corresponding parameters of the smoothed line. For a 
poor fitting to the striaght line, a fair estimation of parameter x o' plotting 
~i - Xo values yields a straight line if xQ is fairly estimated. The straight line 
fitted to the data is essentially a least squares estimation, giving a result free 
of subjective errors upon analytic calculation [14]. 

In case of small samples, estimations resulting from these methods can­
not be exactly appreciated. The distributions, variances of the estimations 
can only be determined for large samples, using asymptotic theory. 

Irrespective of the applied procedure, the examination of the distribu­
tion of ordered sample elements may be instructive of the possible accuracy 
[13]. On this basis, L. G. J OHNSON examined the reliability of estimations for 
the two-parameter model. This, ho·wever, permits conclusions on the test 
range alone - if parameter b is known. 

Distributions of other statistics can, hovever, be determined also for 
small samples, permitting conclusions on the reliability of results. 

3.1 Provided Xo = 0 is acceptable on the basis of the sample - or of 
preliminary considerations - (e.g. graphic analysis), maximum likelihood 
estimations are quite efficient, related to the eRAMER RAo lower bound, even 
for small samples. They are asymptotically unbiased; with the aid of the un­
biasing factors, determined by simulation, they can be taken unbiased even for 
small samples [10]. 

These estimations result from the iterative solution of maximum likeli­
hood equations n , 

~ xi? In x· 
~ I I n 

n ;=1 -;;- - n -'-____ ...L :>- In x -= 0 
1 n, I...... I 

o Y.x~ i=l _ I 

(2) 

;=1 
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where xi (i = 1 ... n) is a sample of n elements with the distribution function 
(1), band 3 are parameter estimations. 

The distribution of bib can be demonstrated to be the same as that of 
b11' and that of b In (8/b) as that of bnln bn where bn and bl1 are maximum 
likelihood estimations of a random variable of parameters b = 1, b = 1, 
and distribution (1). Distribution of b11 and b11 can be determined by Monte 
Carlo simulation. Hence, confidence interval at 1 - c level can be given for b 
and b, with the aid of the percentage points of the distributions of b11 and b11 : 

(4) 

where bi and bi (i = 1, 2), as functions of n, can be calculated, based on the 
tables of the distribution of bn and 611 [11]. Similarly, one-sided confidence 
bounds can be given. 

3.2 Based on theoretical and empirical studies, the best linear invariant 
and the best linear unbiased estimations have certain good properties, ",rhich 
are similar to that of the maximum likelihood estimations. They are easy 
to obtain, by the transformation of Yi = In Xi' in the following form: 

n n 

f3 ~ ai,nYi' g = ~ bi, Yi' where Yi are of the type I extreme value distribu-
i=l i=l Il 

tion. 'with parameters f3 = lib. g = In b. Optimum 'weights a, bi i = 1 ... n, , , "n 'lZ 

can be obtaincd from tables [8]. Determining by simulation the distribution 
of certain functions of the parameters [9], confidence intervals or confidence 
bounds similar to those in item 3.1 can be given for parameter estimation. 

For the probability of survival R(x), defined by R(x) = 1 F(x), to a 
given xE' lower confidence bound on R(x

E
) at a given probability 1 - c can 

directly be calculated [9] [12]. The above considerations will be presented on 
the following examples. 

The results of a life test of five specimens [5] plotted on Gumbel proba­
bility paper, give a good fit to a straight line, so Xo = 0 can be accepted. The 
maximum likelihood estimations of the parameters are b = 1.95, 6 = 185; 
with the unbiasing factor for b, b 1.31. The 90% level confidence intervals 
for the parameters are: 

and (105 < 6 < 349) . 

The confidences for the percentage points, given by the above equations, are 
presented in Fig. 1. From practical point of view we have given also the one­
sided lower bound, belonging to the 90 % level lower confidence bounds of the 
parameters. 
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Fig. 1 

For a life test of ten specimens [5], the confidence intervals are much 
restricted (Fig. 2). 

The life test data of 23 ball bearings [6] also plot reasonably well as a 
straight line, on Gumbel probability paper, so a two-parameter model can be 
assumed (xo = 0). The maximum likelihood estimates and the confidence inter­
vals are presented in Fig. 3. 

3.3 If assumption Xo = 0 is opposed by preliminary considerations or 
graphic analysis, procedures in 3.1 and 3.2 are useless (provided Xo is known 
or pre-estimated). No method is known for calculating exact confidence inter­
vals for small samples. 

From practical aspects, however, the three-parameter model is needed 
exactly for describing the range of low failure probability, decisively affected 

by parameter Xo; for x < xo' F(x) = O. 
But a confidence interval or lower confidence bound can be given for 

the location parameter Xo after appropriate transformation of the sample 
elements. 

Let us consider a sample of n elements ~i' i = 1 ... n, taken at random 
from a population of distribution (1), arranged in ascending order. Then the 
common density of the random variables 

~. = (X.i - Xo J b i=I ... m<n 
Xl - Xo (5) 

V 1 =I<V2 < ... <Vm m n 

can be demonstrated to be independent of 0 [10]. 

4* 
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Taking the statistic 

(6) 

then, if Xo is the true location parameter, (6), as the ratio of two independent 
chi square variables, each divided by its number of degrees of freedom is of 
Snedecor's F-distribution with the parameters 2(m 1), 2, [l0], where m 
indicates the type two censoring from above. 

Thus, taking U equal to F 1 - e!2 or Fef2' the iterative solution of the 
resulting equations gives confidence interval for Xo at level 1 - e, where 
F 1- ef2 and Fef2 are the upper and lower e/2 percentage points, respectively, of 
the Snedecor distribution of 2 (m - I), 2 degrees of freedom [10]. 

In a similar way, equation U = Fe(2 [m I], 2) gives an I e level 
lower confidence bound for the location parameter Xo if Fe is the lower e 

point of the Snedecor distribution of 2(m I), 2 degrees of freedom. 
Percentage points of distribution F may be taken from tables or calculat­

ed by the relationship [10]: 

I eI /m - I 

F;(2[m-I],2)= --- ----­
m - I I_eI /m - I 

(7) 

The statIstIc (6) gives also a statistical test for testing the hypothesis 
Ho : Xo :> x~ or H~ : Xo < xc,. In case of simple alternatives of practical im­
portance, the po"wer of the test is rather high [10]. 

Thus, the presented procedure gives a confidence interval for Xo if b 
is kno"wn at least approximately. Other"wise it can be replaced by its value 
estimated from the sample, giving a conditional confidence interval. 

4. Application in case of a multistage fatigue test 

Application of procedures described in item 3.3 will be presented on the 
results of a large-sample fatigue test. Test results refer to notched specimens 
made of steel Ck 35 (DIN), tested at an extraordinary care [7]. In the range 
(j = 38,5 to (0,5) to 32, none of the tested 20 specimens at each level, (24 at 
(j = 32 kp/mm2) endured 10 7 cycles. Thus, the fatigue range can be ended 
at 32 kp/mm2• Our computation results refer to this range (Fig 4.) [7]. 

From the plot at each level, the assumption Xo 0 seems to be inade-
quate, especially for lower stresses (Fig. 5). There are also deviations from the 
lognormal distribution. 

As a comparison, maximum likelihood estimations have been made of 
parameters and percentage points, assuming Xo = 0 as trivial lower bound 
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of the location parameter. Values obtained for 1%, 10%, 50% points are 
shown in Fig. i. As a comparison, lognormal model results have also been 
plotted [i]. Agreement can be stated to be statisfactory in the 10 to 50% 
range. Because of the trhial lower estimation of X O' confidence intervals for 
the individual percentage points give no practically evaluahle results. For 
50% failure probabilities, however, the lower estimates, based on the 90% 
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max. likel. one-sided lower limits of the parameters, have also been indicated 

(Fig. 7). 
From graphic analysis results, evaluation in the failure range has been 

made with the assumption Xo > O. 
Analytic iteration has been applied for parameter estimations of the 

three-parameter model. Three-parameter evaluation resulted in a rather fair 
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fitting at each level (Fig. 6). From the results, making use of the estimation of 
b, 95 % lower confidence bound has been obtained (Fig. 8). 

Thus, if xb is the lower confidence limit, the obtained points are inter­
preted as: 

P(xo > Xo ! b = b) 0.95 (8) 

where Xo is the true location parameter. 
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As a comparison, 1 % failure probability estimations have been plotted 
according to the modified arc sin transformation suggested by ~hENNING [7]. 
Here the probability estimation is arc sin V (i - 0,8)/{n + 1) found heuristically 
(Fig. 9). 

For sake of comparison, the 1 % failure probability points have been 
plotted for thc lognormal case, too (Fig. 9). 

The calculations were performed on an Odra 1204 computer, programmed 
in Algol language. The calculations required only a few seconds for each level. 

5. Conclusions 

1. Reliability of estimated values can also be concluded on in case of the 
Weibull distribution, by means of parameter estimations given by statistical 
functions of known distribution, or determinable by simulation. In case of 
two-parameter models, reliability of the obtained values (x o = 0) can exactly 
be determined. Accordingly, estimation of percentage points can be evaluated 
and effect of increasing the sample size determined. Knowledge of the con­
fidence intervals is also instructive for determining the "safety factors" some­
times required. 

2. In case of a three-parameter model, confidence interval for estimating 
the location parameter Xo can be given by means of statistic (6), making use 
of an at least approximate value of b. Replacing b by its value estimated from 
the sample leads to exact conditional confidence limits for the assumed b 
values. 

3. Effect of increasing the sample size can be directly read off Figs 1 
to 3. Assessment of low or high failure probabilities is rather uncertain, especi­
ally for small samples. 

4. From Fig. 7 showing 50% failure probability lower confidence limits, 
reliability of estimations is seen to decrease with lower b values (i.e. with 
decreasing stresses). Hence, for a given sample, at lower stresses it is advisable 
to test more specimens. Numerical distribution can be made according to 
parameter pre-estimations. 

5. The lower confidence bounds for the location parameter Xo show a fair 
agreement with 1 % failure probabilities indicated by lVIAENNING. This is 
rather interesting since the t-wo values are concluded on from quite different 
theories. Although they differ by interpretation, they can be considered simil­
arly, as design values. (At higher stresses, however, the differences are greater. 
But taking into account the first failures, the 1 % values given by arc SIll 

transformation are rather high, Fig. 9.) 
6. In the 10 to 50% range, both the two-parameter Weibull, and the 

lognormal distribution yield fairly agreeing results. Effect of the selected 
model becomes decisive for low values. 
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7. The lower confidence bound according to (6) of parameter Xo means 
the limitation of the failure range at a given probability. Thereby the plane 
(J-N can be divided into a failure-free zone and a failure zone at a given prob­
ability. 

8. In lack of a preliminary information, an estimation according to 
statistic (6) is influenced by the uncertainty of the estimate of b. Hence, it 
can only be applied for larger samples. 

9. For constructing a W oehler curve by the presented methods, some 
indication may be obtained for the values of the curve. For each failure proba­
bility, the fitting to the lower confidence bounds yields lo,,-er values in case 
of small smaples because of the greater intervals. These taken into considera­
tion, effect of the sample size can directly be described. For a larger sample, 
relatively higher cycles are obtained as lower bounds at the same reliability. 

10. The presented methods can widely be used in certain fields of fatigue 
testing and load analysis (e.g. extreme loads). 

Summary 

Based on the fact that life test data are usually rather scattered, fatigue characteristics 
of the material are better determined by statistical methods. The estimation of the parameters 
of the assumed distribution as well as estimation of life test data involve a certain degree of 
fluctuation. Interval estimation procedures are quite adequate for the evaluation of fatigue 
data since they lead to definite conclusions on the reliability or uncertainty of the statement 
arrived at by these procedures. Methods for obtaining confidence bounds based on the Weibull 
model are presented. Numerical examples based on life test data are given and the results are 
discussed. 
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