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Introduction

In this paper, the behaviour of storage systems will be described from a
new viewpoint. The characteristics of storage system behaviour are jointly
determined by (1) environmental influences, (2) the function and (3) the
capacity of the store, (4) the reliability and (5) the through-put capacity of
its service system and (6) the input and release rules. The comprehensive
stochastic model described here algorithmizes the description and evaluation
of the behaviour system with a view to the above mentioned factors. The ad-
vantage of the complex reliability-oriented model over the rather static
models of inventory control theory is that on the latter the fundamental
technical and reliability characteristics are given a more prominent role in
the description of the behaviour of storage systems. The model, the algorithm
and the computer simulations based on them facilitate to design storage
systems, development and research of particular systems and preparatory
phases of investment decisions.

1. The role of storage systems in the flow of materials

The flow of materials between the supplier and customer systems is
induced by the demands of the latter system which, in turn, possesses stoch-
astic characteristics. The demands flow from the customer system to the
supplier system inducing the flow of materials in the opposite direction (Fig. 1).

Storage systems have a function of balancing and controlling in the flow
of materials between the customer and supplier systems. Balancing and con-
trolling are characteristic features of storage systems functioning without
and with inventory control, respectively.

If both the emergence of demand and the flow of materials from the
supplier system are deterministic and without phase lag the marginal case of
a storage system results where the input quantity is always equal to that of
the released material. The best illustration of this case can be obtained by ima-
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Fig. 1. Processes affecting storage systems

gining the flow of some material in a “tube’”. In case of phase lag an extra
dam capacity has to be added to the “tube” in case of both deterministic and
stochastic flows. in order to safely meet the demands. In this case the storage
system has a balancing function. '

In case of stochastic flows without phase lag, the existence of the storage
system is justified by safety reasons.

2. The systems engineering interpretation of the behaviour,
conduct and functioning of the store

The behaviour of the storage system (that is, the change of its parameters
relating to the function of time experienced by the environment) is determined
by the changes in the information flow from the customer system and by the
changes in the flow of materials from the supplier system, and, also by the
changes in the service ability conditions of the store itself.

The conduct of the storage system is manifest in the rules which determine
the immediate connections between the store and its environment. If the
store operates on an inventory control basis then the inventory control strategy
means the conduct the store displays towards the supplier system. Otherwise
passive conduct of the system as to the input environment can be spoken
of. (For instance, the report that “the store is full” is a rule of conduct in this
meaning.) The connection between the storage and the customer systems is
characterized by the so called release conduct. The latter means the rules on the
basis of which the system. prompted by the demands arriving, releases the
materials ““according to its own abilities™ (e.g. priority rules, adaptive release
rules, etc.). The expression “‘according to its own abilities™ indicates that the
satisfaction of demands is limited by the technological and reliability para-
meters and the level of storage at the moment.

From the point of view of:systems engineering the (internal) functioning
of the storage system can be interpreted as follows.
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The input flow of materials arrives at its appointed place in the store
(according to some plan of the indoor distribution of materials) through the
service system. The output flow of materials governed by the flow of demands
leaves the store through the service system (according to a certain output
strategy).

The input and output flows of materials are limited by the throughput
capacity of the service system. The throughput capacity of the service system
depends on the volume and reliability of the equipment capacity as well as
on the applied strategies of output and of the indoor distribution of materials.
Therefore simulating the throughput ability of the different equipment
systems it is useful to consider, with the help of different methods, the through-
put ability, the level of capacity as a random variable.

3. Principles of investigating the behaviour of storage systems

The storage system can be considered as a system to be mathematically
modelled by stochastic processes since the input and output flow and the
internal functioning of the store is random.

In the systems engineering model describing the behaviour of the store
the input signals of the system from the customer’s point of view correspond
to the set of information of demands arriving from the customer system, while
its output signals correspond to the set of information dispatched to the customer
system by the store. The state of the system is characterized by the inventory
level of the store (Fig. 2).

In this case simulation of the storage system is oriented towards relia-
bility problems, so the additional characteristics involved in the model may be
considered as sources of noise. Three different sources of noise can be distin-
guished in the model of the system. The external source of noise is the randem
fluctuation of the input material flow, while the two interior sources correspond
to the random fluctuation of the capacity of the input and the output ser-
vice systems. There has been two type of research concerning storage systems.

— Research concerning store technology concentrate on the machine units
of the system, on the functioning of and the connections between its
sub-systems and on the internal processes of the store. They do not
consider the store as an organic whole, and they fail to investigate the
interrelations between the system and the environment.

— Inventory control strategies and dam theories treat the storage system
as a “‘black box™. In deseribing its behaviour and operation they con-
centrate on the cost-factors involved and neglect as a rule, the factors
of technology and those of the flow of materials.
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Fig. 2. Storage system in its relation to the flow of materials and information

The aim of the stochastic model described in our paper is “to look into
the black box™ by unifying the inventory control theory and the description
of the internal processes of the store, that is, to give a description in relation
to time of the store and of its interrelations with the environment, where its
basic technological and reliability parameters and. also, its rules of conduct
are taken into account and the store is considered as an organic whole. This
description would make the behaviour of the store suitable for evaluation.

4. General model for the description of the behaviour
of storage systems

4.1 Conditions determining the behaviour of storage systems

With respect to the described model, the characteristics of the ““behaviour”

of a storage system can be summarized as follows.

4.1.1. The behaviour in relation to. time of the system is investigated in dis-
crete periods.

4.1.2. In every period the supplier system releases material towards the storage
system.

4.1.3. In each period the customer system releases demands to the supplier
system.

4.1.4. The storage system is assumed to receive the materials that have arrived
from the supplier system “according to its own abilities™ and to satisfy
the demands that arrive within the given period if it is made possible
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by the level of storage and the capacity. (This condition can be met
by a suitable choeice of periods.)

4.1.5. The storage system does not release more material than is required by
the demands, and rejects the quantity of arriving materials in excess
of its capacity.

4.1.6. The behaviour of the storage system involves the level of storage and
the demand satisfied in period ¢ to be independent of the “‘rejected®
materials and of the demands not satisfied in periods ¢t — 2, ¢t — 3.
With the only exception of the service rule (described in 4.1.7.) no res-
trictions will be made to the conduct rules of the storage system.

4.1.7. For a demand in excess of the level of storage in a given period the store
releases its whole stock. (This condition does not reduce the generality
of the model since the service rule deseribed above can be considered as
a general one if the number of the sources of demands is great enough
or the store enjoys monopoly).

4.2. The definition of the parameters in the system

The environmental parameters of the system. In the case of a particular
problem the environmental parameters of the svstem can be considered as
given by their stochastic description (probability distribution).

Let i(t) be a discrete random variable denoting the intensity of the flow
of demands emerging during this period expressed in arbitrary units of mate-
rials.

Let p,(t) denote the probability distribution of the quantity &(t) of the
demand as diserete random variable:

pt)=PElt|=0) 1=0,1,2...

Similarly, let discrete random variable 7(t) denote the intensity of the input
flow of materials in a period ¢ and let r,(t) denote the probability distribution
corresponding to 7(t):

rt) = P(yjt| = k) E=10,1,2...

To simplify notations, in the computations below the set of values of the
given random variables will be considered as the set of the non-negative in-
tegers; but, out of practical considerations, a subscript NV can be assumed be-
yond which the probabilities belonging to the corresponding values equal
zero.

The technical parameters of the system. Introduction of the characteristics
relating to the service system is justified by the capacity of the storage service
equipment that sets a limit to the arbitrary intensities of the flow of materials.
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Let 4;,(t) and J,4(¢) be random variables which assume non-negative
integers. By introducing these values, the capacity of the input and the output
service systems (that is, the maximum number of arbitrary input and output
units in period t) can be modelled.

The distribution of random variables },,(¢t)} and 2, (¢) can be considered
as given by u,(t) and v.(t), thus,

u,(t) = P(4;,/t | = n) n=20,1,2,...
vi{t)=Pl,lt]|=2) z=0,1,2,...

Let positive integer C denote the capacity of the store expressed in arbitrary
units of materials.* (One of the basic aspects of the described process is to be
useful in decisions for the proper selection of the capacity, by providing evalua-
tion eriteria for the “goodness* of the store.)

Behaviour parameters

With the above listed system parameters already given, the following
time-dependent characteristics of the system behaviour can be determined if
the distribution of the initial stock is known. Let «(¢) denote the level of stock
(inventory function), that is, the quantity of materials in the store in period ¢,
expressed in arbitrary units. Obviously, ¢(¢) is a discrete random variable if
¢ is given, Its probability distribution is described by the following formula:

gplt!=Plalt|=h h=012,...

Thus, probabilities g,(t) express that at the beginning of period ¢ there is
quantity k of arbitrary units in the store. Accordingly, discrete random vari-
able «(0) denotes the initial stock expressed in arbitrary units. The correspond-
ing probability distribution is:

g0 = P(z{0|=h) h=0,1,2,...

The store attempts to satisfy the demands according to the flow of materials
from the supplier, the demands and the level of storage at that moment. The
released quantity of materials, the intensity of the output flow of materials
can also be described by discrete random variables in each given period .
Accordingly, let 5(i) denote the discrete random variable expressing the inten-
sity of the release flow of materials, that is, the amount of output materials
in period ¢ expressed in arbitrary units. For the probability distribution of the
release quantity of materials, as a discrete random variable in period ¢, the
following denotations will be used:

wlt]|=P@lt]=s) s=012 ...

* In the case of practical applications, the selection of arbitrary units for non-homo-
geneous materials constitutes the topic of a.different investigation.




Table 1

Storage system parameters

Nature of
system parameters

Assumed system parameters

Computed system parameters

Classes of
system parameters

Environmental parameters

Technological parameters

Behaviour parameters

Stochastic process

Notation

Distribution

Demand of customer
system {expressed
in arbitrary units)
in period ¢

6]

discrete
random
variable

pit) = PE@) =1
1=0,1, 2,...
t=20,1, 2,...

Quantity of arrivals
(expressed in arbit-
rary units)in period ¢

7(t)

discrete
random
variable

ri(t) = P(u(t) = k)

E=0,1,2,...
t=20,1, 2,...

Input service capacity
of store (expressed
in arbitrary units)
in period ¢

;'z' r.(‘)
discrete

random
variable

un(t) = P(4in(t) = n)

n=20,1,2,...
t=20,1,2,...

|

Output service capa-
city of store (ex-
pressed in arbitrary
units) in period ¢

32 Aour(t)
discrete

random
variable

2(t) = P(Apust) = 2)
2 o== ],, 2, ‘e
==

0,
0,1, 2,...

(Containing) capacity
of store in arbitrary
units

positive
integer

Amount of initial
stock, i.e. the quan-
tity of materials in
store (expressed in
arbitrary wunits) in
period 0

«(0)

discrete
random
variable

qn(0) = P(«(0) = h)
h=0,1, 2,...
t=20,1,2,...

Amount of stock in
store (expressed in
arbitrary units) in
period ¢

a(t)

disecrete
random
variable

qn(t) = P(a(t) = k)

h=0,1,2,...
t=20,1,2,...

Output of store (ex-
pressed in arbitrary
units) in period ¢

B

discrete
random
variable

o5(t) =P (B(t) = s)
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Fig. 3. System parameters and model

The system-parameters and their characteristics are compiled in Table 1.#
Fig. 3 shows the systematization of the characteristics of environment,
technology and flow of materials.

4.3, Formal model for the behaviour of storage systems

4.3.1. Transition and output probability mairices

Our aim is to describe the behaviour of the system with respect to a
certain optimum, or evaluation conditions on the basis of the storage system
parameters given in 4.2. by means of determining the following conditional
probabilities:

; pI(h(t = DR(r)) (4.3.1.)
Pl (s(t)/h(2)) (4.3.2.)

* Besides these, the behaviour of the system. will be evaluated by means of the para-
meters (E[(t)]) and (E[4(f)]) denoting unmet demands, and *'rejects’” (5).. resp. which can be
calculated from the characteristics given above.

=

5 Periodica Polytechnica Transport Eng. ¢/1




{2 P. VARLAKI and A. BUDAT

Here 4.3.1. denotes the probability for the inventory level h{t), of the store
of a period ¢ will become h(t -~ 1) at a period (¢ - 1). 4.3.2. denotes the proba-
bility that, if the inventory level is h(z) the output guantity of materials will
be s(z) in period . These probabilities will be explicitly defined by two matrices
consisting of conditional probabilities.

Theorem 1

The storage system is assumed to satisfy all the (systems engineering)
conditions in 4.1.1 to 4.1.7. In this case the inventory level of the store deter-
mines a (usually inhomogeneous) Markov chain. The elements of this transi-
tion probability matrix M(t) depend only on the distribution of random variab-
les &(z), n{t). A,.(t) and 7,,,(t) and the capacity of the store, and correspond to
the probability described in 4.3.1. A constituent m,, of matrix M is:

g

= -1 - p -1
m;; == > ;’p;ﬁtﬁ ot -d(igs) + = [p,'gtgd(i,jfl) {1 - L-f” {(4.3.3.)
=1 =0 =0 =

where

z—1i frei /
> (wtrn) - [ 3 ]
y=0 i=0 Hf:o
ifj=0,0<Li<C z—~12>0
J—i4z—1
Upjoz T Ty = Tjmppr " Wipr = > (Wepee T T 1)
p==0
d(i.jlz)= Ho0<j<C oLiglC j—i+z2>0
Cc—1
1— Z [llj—i+: A T jeprr ™ Ty Wiz
J=0 .
J—i+z—1
- i
_‘ Z (llj_,.,‘.'l,/.”r Tj—i+z Zl,y)}
==
Hj=0C0<LigLC C—-i+52>0
0 otherwise (4.3.4.)

In the above and following formulas, for the sake of simplicity, the
(period) variable “t”” has been omitted and the convention adopted that. if
the upper limit of a summing or an index becomes negative, the corresponding
formula is zeroed.

Proof:

First, the inventory level of the store. that is, stochastic process ux(t)
is proved to be a Markov chain. To achieve this, the following has to be proved
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Pla(t) =1 [ 2(t — 1) = jp,
alt — 2) =jioy - a(l) =j) = Pla(t) = i |aft — 1) =j,) (435
The storage models can be sorted into two basic classes:

a) if the model has no “memory”* the inventory level of the store in the
next period does not depend on unmet “demands’ and “rejects” of previous
periods,

b) in case of models with “memory™ this restriction does net hold.

Tt is obvious that in case a), relationship (4.3.5.) holds and in case b),
it simply follows from condition (4.6.1.).

In computing transition probabilities m;; first let us assume that the
input, output and the capacity of the store are infinite and define the proba-
bilities a(i, j/I) exp

ressing that the inventory level will be *j” in period t -+ 1
if the store had “i”” amount of stock at the beginning of period ¢, while suppos-
ing that a quantity “I”" of materials is demanded,

Applying 4.1.7:
iHj=0 and I —1i>90

’rj+1~,- ifj>0and j+1—1>0
lO otherwise
Namely:

— the inventory level of the stock will be zero if the amount of the input
materials and the stock i equals or is short of the amount of demands,

-~ the inventory level of the stock will be j >> 0 if the amount of the input
material is j + 1 — 1= 10

— and the probability of any other event is zero.

Now the capacity of the store input system is assumed to be n. From the aspects
of the functioning of the input system, this means that any amount of materials
greater than n will be rejected. Accordingly probabilities b(Z, j|I. n) relating
to the event of the inventory level i of the store to become j, for an amount
of demands [ and a capacity n, are:

I~i
‘ZTV Hj=01l—-i>0 and [ —i<n
p==0
1 ifj=01—1i>0 and [ —i>n
b(i,jiLn) ={r ifj>0j+1-i>0 andj +1—i<n
< n-—-1
qu=1~2nifj>0;j+l-i20 and j +1—i=n
y=n v=0
0 otherwise

* In simulating the behaviour of storage systems “‘memory” usually means that the
store “remembers’’ the unmet demands and the “rejects” in the given period.
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Let d(i,j | I) denote the probability that the store transforms from level i
into j, provided that the amount of demands that arrived is [ and the capacity is
Aine

According to the formula of total probability to this case:

di.jll) = Zuv-b(i,j%l,'u).
v=0
Then using formula b(i. j | I, n), summing can be described as follows:

a) if j=0andl—i>0

-1 I—i =
wj 1= Sut(Sn]| 5 |-
1

vz=={ v==0 HECY BN (4 3 6 )
1—i (1—i =i
p— - 3
= >, +u)+ (Z r {Z u‘)
p] ve={ s lr=(
byifj>0andj+1—12>0
L p— < } w-v o .
d@i.j 1) = wjpiy 2 Ty = Vit 2 i, =
pe= o l—1 vefri—i+1
Jerlei=1 =i
= Uy (1 - > 7',,] LI (l—— > u, (4.3.7)
P 0o )
JHl—i—1
— » . . N .
S Uy T T Uy Z (ll’j+l—i L R u,).
p==0

¢) Furthermore, if conditional inequalities 4.3.6 and 4.3.7 do not hold, the
corresponding probabilities d(i, j | I) are seen to be zero.

Let us see how probabilities d(Z, j | [) vary if the finite capacity of the
store is C. In this case no changes of the inventory level where j >> C (that is.
the corresponding d(i.j | l) = 0) are allowed. Imagining a store which, when
it is full, “rejects” the arrivals the reception of which would be still allowed
by its input service capacity. it is obvious that in the case of a store with a

capacity C, 0 <i<{Cand C — 1 4+ 1 >0,

wg

j=C

d(@,Cll) = .§Td(i=j§l)=

c—1
=1 [uj+z~i+"j+z~i — T Wy — (4.3.8)
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For 0 < j < C, relationships 4.3.6 and 4.3.7 still hold true for probabilities
d(i,j | I) even in the case of capacity C. Let now z denote the output capacity
of the store in a given period. This involves the following changes for the pro-
babilities which determine transition.

d@i.j |l if 1<z
e(z,ng,;)_—.{dEi;ﬂz)) iiézz (4.3.9)

where (i, j | [.z) denotes the probability of the inventory level of the store to
be i at the beginning and j at the end of the period, provided that the amount
demanded is ! and the capacity of the output service system is z. Now transi-
tion probabilities r;; occurring in the theorem can be calculated. Applying
the formula of total probability twice:

ml,.jzip, [sz ce(i,j Il :)) =
=0

z=0

-1
=33 p v dijla) -+ (4.3.10)

+ > [p, (i, 1) (1‘5 | v”

Relationship 4.3.9 was applied in the transformation. d(z,j | 5) and d(i.j | I)
are determined by relationships 4.3.6, 4.3.7 and 4.3.8.

Clearly, the matrix of values m; ; is stochastic, since values m; ; constitute
probability distribution for given i. This is explicit from taking into account
the probabilities obtained from the process of proof and the fact that the
mixing of probability distributions is also a probability distribution.

Theorem 2

The storage system is assumed to satisfy the conditions in 4.1. In this
case the amounts of material released in each period can be characterized with
a matrix N(¢). and n;; member of which equals probability P(t)(jii) occurring in
4.3.2,

The elements of matrix N(z) are defined as:

e

n; =2

=0 z

WE

vopytdi.j L z)

il

[
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where
Ui Ty 4 g‘ (uj.-_,—- Fr T jmy W)
/=sz*~1
Hj—1>0 and j<<L 1<5s
j—1>0 and j <z <1< C
[ =j—i
1 fj-i<0.j=1<:<C
d(i.jilz)= J—i<L 0, j=2<1

"")} (4.3.12.)

0 otherwise

Proof:

Assuming the input and output capacities to be infinite, let us deseribe
the probabilities a(Z, j | I) expressing the probability that the store releases an
amount i of materials if the demand is I and the level of storage is j.

From the conditions we obtain (according to service strategy) the follow-

ing:
Tig if j —1>0 and j <1
o > ifj—i7>0and j=1 {4.3.13.)
a(i.j 1) = § =i
1 ifj—i<0 and j=1
0 otherwise

Now, let the value of the input service capacity be n. In this case we obtain
probabilities b(z, ] | I, n) expressing that the store releases j units of materials
if the inventory level is i, the demand is ! and the input service capacity is n,
by rewriting the formula (4.3.13.):

«
r, — 21 and

Toags Tpoos o os — 0,

After transformations, on the basis of the formula of total probability the
relationship 4.3.12 is obtained, denoting probability of the event that the
store releases j units of materials, provided the demand is [, the inventory level
is 7 and the capacity is z.
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Fig. 4, Changes in inventory level distribution on discrete time scale

This results in the theorem applying twice if the formula of total proba-
bility is to values d(i,j | I, z) to demand p, and output capacity distributions
v,. The matrix composed of values n;; is stochastic, since values n;; constitute
a prohability distribution, for a given i,

4.3.2. The transient behaviour of storage systems

According to theorvem 1 Bi(¢) matrix, defines a Markov chain for random
variable «(f) expressing the inventory level of the store and permitting to
algorithmize the behavicur of the store.

Let vector ¢ft) denote the column vector of the probakility distribution
concerning the inventory level of the store in period 1, component h of g(2) is:

Qiz(t) == P(’Z(i} = Iz)

1
in
8

en function of the system can be illustrated en a discrete time-scale as
hewn in Fig. 4. Thus the distribution of the inventory level can be deter-
mined in an arbitrary period ¢ - 1, in accordance with Fig. 4. by the recursive

formula:
g (t - 1) = q(e)M(z + 1) (4.3.14)

helping to determine the probability distribution of the inventory level of the
store for any period . if distribution for the initial amount of stock q*{o)
is known and transition probability matrix M(t) is computable from theorem 1.
Theorem 2. yields the probability distributions of the amount of material
output in periods t.

Let vector w(t) denote the column vector of the probability distribution
of the output of the system (the amount of materials released) in period ¢
that is, the element s of vector w(t) denotes the probability:

wi(t) = p(p(t) = s)

In this case the changes in the cutput of the system can be illustrated as in
Fig. 5.

Thus, in accordance with the definition of N(z). the probability distri-
bution of the amount of material released in any period ¢ can be, defined as:

w*(t) = q*(t — 1)N(¥) (4.3.15.)

* (*) denotes the transposed vector (row vector) as defined by matrix algebra.
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The behaviour of the system from the standpoint of the customer is shown
in Fig. 6.

Summarizing our results, on the basis of theorems 1 and 2, if the environ-
mental, technological and reliability system parameters are considered as
known, transition and output probability matrices M(t) and N(z) can be stated

a%0) N(D)  q*(1) N(2)
t s == e = | |

{ ! I 1 1 =
period 1 period 2 petiod t

............. FU-DN)

Fig. 5. Changes in output distribution on discrete time scale

s gD = g M (D) -

Fig. 6. Changes in storage system behaviour in terms of customer system expectations

to be constructible. The behaviour in time of the storage system, can be de-
scribed by the algorithm based on relationships 4.3.14 and 4.3.15 in case of
capacity C.

4.3.3. Permanent system behaviour

One of the basic practical features of the storage systems is the periodical
change of distribution of their input parameters (distribution of demands
and of input), The periodicity may be disturbed only by a stochastic “pertur-
bation”. Therefore an investigation of systems of periodical behaviour may be
of particular interest. For these systems the following propositions hold:

a) Transforming the time scale by selecting one period as unit of time,
matrix M(t) characterizing the condition of the system becomes independent
from the periods. In this case the process can be described by an ergodic Markov
chain.

The existence of ergodicity can be proved as follows: if the input distri-
butions contain non-zero elements “in a sufficient number” then the structure
of a transition probability matrix concerning a new period, wich has been
obtained by multiplying the matrices M of the periods with each other, can be
divided into four sub-matrices (See: example). Among these M,; and M,, are
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entirely filled with non-zero elements; M,, and M,, are triangle-matrices. The
powers of these matrices are characterized by the fact that the greater the
exponent, the smaller the dimension of the sub-matrices M;, and M,,. Thus,
a column. containing positive probabilities results only if a suitable exponent
is chosen. In this case, according to the Markov theorem, the transformed
chain is ergodic.

b) The behaviour of the system is characterized by the fact that, be-
cause of the choice of the probability distribution of the initial stock, transient
states may occur in the beginning, but after a sufficiently long time the system
is stabilized, it assumes a so-called steady state.

¢) The limit distribution (absolute stationary probabilities) can be cal-
culated by methods known from the theory of Markov chains (e.g. with
the solution of simultaneous equations). Evidently distributions within the
period can also be generated from the limit distribution.

5. The evaluation of the behaviour of storage systems

In modelling storage systems, a mere description of their behaviour is
insufficient. Some evaluating conditions and decision rules are also necessary
for the analysis of the “goodness”™ of their behaviour.

The given model is of help in determining the statistical characteristics
of the behaviour parameters of the system vielding information necessary for
the evaluation of the store.

The expected value and variance of inventory funciion x(t) in period t:

C
Ela(t)] = 3 gyft) - b

h=0

C
o la(t)] = 3 [k — E(x| t P (t)

1=

-~
<

The expected value of the amount of unmet demands y(t) in period i:

Ely®)] = E[£@#)] — E[3()]

where
BIs0)] = Spe) -1 and EB0)] = Swt) - s
=0 §=0

The expected value of the amount of ““rejected” arrivals in period t:

E[6(t)] = E[n(t)] + E[a(t)] — El«(t + 1)] — E[B(1)]
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Table 2

Parameters for the evaluations of storage system behaviour

T

Stochastic process Notation Statistical parameters

Ela(t)] = q*(t — DM@k

Inventory function a(t)
C
| Lootlad] = 2 [k — E(@()Pa)
E fi==0)
Rate of unmet demands ! (1) Elv)] = [{p* — ¢ — DHNOM()]k

“Rejects” EW) = [+% — g%t — DI—-3¢ ~-1)—
(arrivals of which entry into a(t) W = i —a*( ! A )

the storage system is denied) | - N - ¥k

where

EB(@)] = 3 rd0) -k and alt = 1) = x(t) — (5() — 3()) — (1)

k=0
These relationships can also be formulated by matrix formalism.
If k* denotes vector (0,1,2,... C) then
Ela(t)] = q*(t — 1)“( )k
Ely®)] = (p* — q*{t — DN{)F(r)k

E(@)] = [r* + (t — DI — M + 1) — N@))M(r) ]

(here p and r denote the vectors of the probability distributions corresponding
to the amount of demands and of arrivals, respectively; I is a unit matrix with
dimension C).

The “goodness’ of the system can be characterized on the basis of the
obtained results, by evaluation conditions and decision rules. Undoubtedly,
no universal rules can be given for evaluating the “goodness™ of the siore,
During the process of designing or investigating the store, suitable evaluating
conditions (optima) have to be selected with respect to the peculiarities of the
actual situation as well. In the investigation of the “goodness™ of the system,
if it is an input-oriented “producing” store the expected values E(x|t]),
E(n|t]) characterizing the quality of the input should be considered while,
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ifitis a demand — oriented “trading” store the expected value E[((t)] that con-
cerns rapid and precise releases is to be investigated.

As an example the following functional reliability values can be ment’oned
similar to the notion of “service grade™ in the theory of inventory control.

lim > ZPO] 4, (5.1,

Formula 5.1. shows that in case of an interval consisting of an arbitrary number
of time units the rate of the probable value of average satisfied demands in
one period ¢ is in each period ¢ higher than. or equal to an arbitrary 1 — ¢
value. Formula 5.2, shows in one interval T the rate of the probable value of
average satisfied demands in each period to be higher than, or equal to an
optional 1 — ¢ value. The characteristics suitable for the evaluation of the
storage system are compiled in Table 2.

6. Example

For illustrating the described model let us present a concrete arithmetic
problem emerged during the computer research on the system model. We have
observed the behaviour of the system during 50 periods with the following
parameters:

1. capacity C of the store is 11 arbitrary units of materials;

. the initial stock comprises 6 arbitrary units of materials at a probability 1;

. the probability distribution of the input service system has been assumed
to have a service system of 3 machines each of a capacity of 2 units of mate-
rials/period. The probability has been taken inte consideration that the
machines could go wrong; according to [1]itis v = [0.0008, 0.0068, 0.0834,
0.2245, 0.1578, 0.000. 0.5259, 0.000, 0.000, 0.000, 0.000]

4. distribution of the capacity of the output service system can be obtained
similarly to that of the input service system, but we have assumed to have
2 handling machines instead of 3. u = [0.0083, 0.0496, 0.3636, 0.000, 05785,
0.000....]

. demands arrive in every period according to the Poisson distribution of 2
expected values.

6. the Poisson distribution of the amount of arrivals has 6 expected values in

every 3 periods, it is 0 in other periods with 1 probability.

Tables 3 and 4 show the transition probability matrices and the output pro-

bability matrices of the system.
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Table 3

Transition probability matrix M(t) in periods 0,3,6 ...

0 1 2 3 4 3 6 7 8 9 10
0 0.1821 0.1679 0.2041 0.1581 0.1562 0.0940 0.0376 0.0000 0.0000 0.0000 0.0000
1 0.0815 0.10006 0.1679 0.2041 0.1581 0.1562 0.0940 0.0376 0.0000 0.0000 0.0000
2 0.0300 0.0515 0.1006 0.1679 0.2041 0.1581 0.1562 0.0940 0.0376 0.0000 0.0000
3 0.0071 0.0229 0.0515 0.1006 0.1679 0.2041 0.1581 0.1502 0.0940 0.376 0.0000
4 0.0023 0.0048 0.0229 0.0515 0.1006 0.1679 0.2041 0.1581 0.1562 0.0940 0.0376
5 0.0000 0.0023 0.0048 0.0229 0.0515 0.1006 0.1679 0.2041 0.1581 0.1562 0.1316
6 0.0000 0.0000 0.0023 0.0048 0.0229 0.0515 0.10006 0.1679 0.2041 0.1581 0.2877
1 0.0000 0.0000 0.0000 0.0023 0.0048 0.0229 0.0515 0.1006 0.1679 0.2041 0.4458
8 0.0000 0.0000 0.0000 0.0000 0.0023 0.0048 0.0229 0.0515 0.10006 0.1679 0.6500
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 0.0048 0.0229 0.0515 0.10006 0.8179
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 0.0048 0.0229 0.0515 0.9185
“Qutput probability” matrix N(t) in periods 0,3,6 ...
0 1 % 3 4 5 6 7 8 9 10
1] 0.1616 0.3034 0.3790 0.1093 0.0467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1373 0.3156 0.3683 0.1099 0.0689 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1373 0.2997 0.3802 0.1039 0.0790 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.1373 0.2997 0.3748 0.1074 0.0808 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.1373 0.2997 0.3748 (.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(3} 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IVang 'F puwe INFTIIFA 'd



Table 4

Transition probability matrix M(t) in periods 1,2,4,5 ...
0 1 2 3 4 5 6 7 1] 9 10
0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000, 0.0000 0.0000
1 0.8627 0.1373 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.5630 0.2997 0.1373 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.1882 0.3748 0.2997 0.1373 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0831 0.1050 0.3748 0.2997 0.1373 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0831 0.1050 0.3748 0.2997 0.1373 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0831 0.1050 0.3748 0.29917 0.1373 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0831 0.1050 0.3748 0.2997 0.1373 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0831 0.1050 0.3748 0.2997 0.1373 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0831 0.1050 0.3748 0.2997 0.1373 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0831 0.2997 0.1050 0.3748 0.1373
“Qutput probability” matrix N(t) in periods 1,2,4,5 ...
0 1 2 3 4 5 [4 7 8 9 10
0 0.1616 0.3034. 0.3790 0.1093 0.0467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1373 0.3156 0.3683 0.1099 0.0689 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1373 0.2997 0.3802 0.1039 0.0790 0.0600 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.1373 0.2997 0.3748 0.1074 0.0808 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
K 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1373 0.2997 0.3748 0.1050 0.0831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 7. Diagram showing the changes in storage system behaviour parameters (Example 1)
Tig. 7 illustrates the changes in the parameter values characterizing the
behaviour of the system, such as the expected value and variance of the in-
ventory level, the expected value of the amount of unmet demands, the
expected value of “reject”™ and the degree of functional reliability-as rela-
ted to time. {Variance is marked by shading in the figure). If the capacity
of the service systemischaracterized by the distributions [4 and 1 machines]
v = [0.0001, 0.0008, 0.0142, 0.0820, 0.2336, 0.000, 0.1912, 0.000, 0.4781,
0.600, 0.000]
and u = [0.0909, 0.2727, 0.6364, 0.000. ..., 0.000] and characteristies 1. 2

5, 6 remain the same, the changes in the parameters of the storage system
are shown in Fig. 8.
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8. Diagram showing the changes in storage system behaviour parameters (Example %)

7. Application and further perspectives

The basic possibilities for applying the described system model and
algorithm, and, also, the simulation research based on them can be summarized
as follows:

1. The investigation of the system can play a prominent role in the prelimi-
nary phases of store developement decisions, In this case the effect of the
proposed changes (e.g. the increase in the capacity and reliability of the
system) and the behaviour of the storage system can be calculated (and
evaluated) from theoretical relationships described above.
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In the course of designing large scale systems beside the expected environ-
mental influences (stochastic characteristies of arrivals and flow of demands)
technological and reliability system parameters required to achieve a cer-
tain degree of ““goodness’ (capacity of the store, capacity and reliability
of service systems) can also be defined. The obtained parameters (para-
meter variants) will mean the basic information for determining the capacity
of the store; the selection of the service systems and establishing the material
flow processes.

The great amount of computations involved in the course of investiga-

tions and design justifies computerization.

The following cases of possible application provide opportunities for

further research and design.

1.

5]

The capacity of storage service systems as a stochastic process is mostly
influenced by the changes in time of the reliability parameters of the ser-
vice systems. The included stochastic process permits to apply the model
for investigating the effect of service-system amortization on the “goodness™

of the store.

. In designing the store the model given here provides an opportunity to

take into account the trends to increase the flow of demands and arrivals,
thus enabling us to make up for the changes maintaining the capacity
level needed. at the desired degree of the “goodness’ of the store (“elastic
model™).

The possibilities for further investigations of storage system behaviour can

be summarized on the basis of the system model as follows:

1.

2.

3.

In case of more than one kind of products the system model can be gene-
ralized by usual mathematical procedures.

From the aspect of simulating the system behaviour, it seems often justified
to assume that within the storage service system the output system is sepa-
rate from the input system (e.g. for what are called Komissionierlagern
in German terminology). Storage service systems can however not often
be divided into input and output service systems, that is, the input and the
output capacity levels of the system cannot be separated.

In this case a unified service system operates according to a given strategy.
This can be simulated by determining a random variable that controls the
changes of the input and output intensity values in each period.

The latter model can be deduced from the system model of behaviour, but
to obtain more detailed results further investigations are necessary.

If the flow of demands and the input flow of materials are independent of
time or they are periodical, the inventory function and the output function
of the store can be considered as the state function and output function
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of a stochastic automaton. The stochastic automaton yields a simple algorithm
for the definition of both the probability distribution of the inventory level
and the output at any point of time.

. The general system model provides the opportunity to construct models
with memory. In this case the store “remembers’™ the information concern-
ing unmet demands, and tries to satisfy the postponed demands in sub-
sequent periods. Here the description of the accumulating amount of unmet
(postponed) demands in terms of the technological and reliability parameters
means to investigate the system behaviour.

HE
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. The investigation of inventory control storage systems with memory seems
to be a complex research problem of incorporating inventory control strate-
gies in the behaviour model with memory. In this case investigations will
focus on the closed circuit of demans and materials.®

6. By making period At to tend to 0 in the general model a possibility is given

to characterize the storage system by anon-diserete model. This mathematical
generalization may yield useful “rheological”” rules for the behaviour of
storage systems.

7. Finally, the system model provides the opportunity for an extensive develop-

ment in the investigations into storage system behaviour and in the descrip-

tion of its self-control processes by means of adaptive and learning algo-
rithms,

Summary

A stochastic model for the description and evaluation of storage system behaviour. By
uniting inventory control and dam model approaches with the description of internal store
processes the described stochastic model aims at considering all the imporant technological
factors involved and at describing storage system behaviour in relation to time and in its inter-
relation with its environment. The model and the algorithm given here are of use in design-
ing stores and in investigations, developments and investment decisions conecerning par-
ticular storage systems.
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* What sort of target function can be constructed of the parameters characterizing the
behaviour of the system and calculated by the given model, and how the corresponding problem
of the optimum can be solved — are problems to be investigated subsequently.
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