DETERMINATION OF STOCHASTIC LOAD
CONDITIONS ON BAR-TYPE MODELS

By

P. Furd and A. KERESZTES

Department of Mechanics, Technical University Budapest

(Received June 3, 1973)
Presented by Prof. Dr. P. MiCHELBERGER

1. Introduction

In general engineering practice the procedure of dimensioning is as
follows:

a) Determination of load parameters, from them determination of
stresses and ultimately that of the stress condition in all points of the struc-
ture. \

b) Experimental determination of the structural material characteristics
with characteristics of the same units as the load parameters bearing in
mind that the test results refer to uniaxial stress conditions.

¢) Co-ordination of the two parameter systems.

The above characteristics are chosen in general as deterministic ones
and the appropriate safety is achieved by safety factors leading to either
over- or under-dimensioning.

Recently, more realistic design methods are sought for. One fundamental
criterion of taking real conditions into consideration is to examine the random
character of loads.

2. Stresses on Bar Systems

Structures that can be modelled with bars (e.g.. the motor vehicle
chassis) are generally subject to the following stresses:

M, = My, + My, + My, + My, (1)
where:
M, — the sum of working stresses on the structure
M,,; — constant load of the structure (e.g., dead load)
M,;, — so-called kinematic stresses due to production and assembly in-
accuracies
M, — random stresses due to external loads
M, — random stresses affecting the other stresses {e.g., unevenness of

road surface)
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In earlier analyses, the sum of working stresses has heen determined-
with loads considered as deterministic. Special analyses have been concerned
with the determination of these stresses by means of considering dimensional
inaccuracies as possible values of a random vector variable [1].

This paper will be concerned with stresses due to external loads. Con-
sidering external load values to be constant, stresses in a hyperstatic structure
with n redundancies are expressed by:

M(s) = [E — M*(MRM*) MR] - M, = A - M,(s) 2)

where:

M(s) — column vector of siresses in different sections of the structure
caused by external loads:

E — unit matrix:

M — matrix of stresses caused by unit internal forces in the struecture
made statically determinate;

R — spring matrix depending on material characteristics and geometry
of the structure;

BMy(s) — column vector of stresses in the statically determinate structure

due to external loads.
Relationship (2) is also valid for statically determinate beams in the form,
M(s) = M,(s) 3)

Since BMy(s) can be produced as a linear combination of external loads, (3)
can be written as:

M(s) = AB(s)F = C(s)F (4)
where
F=r F, 7
: (5)
F;
L F,

the column vector containing the external loads.

B(s) — the matrix constructed on the basis of the structure geometry
converting loads into stresses;
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C(s) — transforming matrix constructed on the basis of material charac-
teristics and geometry of the strueture.

From (4) it is obvious that the sum of working stresses can be produced as a
linear combination of the external loads. Choosing the number of sections
high enough, the stress-function — either linear or parabolic — can be re-
placed by stresses chosen as constant in each section s.

Let the possible values of the probability vector variable

E—=r

KT

(6)

Lo dee L

[ Ei{ i

be those assumed by F. Hence, possible values of &; are the values of force F.

In knowledge of the distribution functions of the independent &; the
distribution function of the linear combinations of the &; can be determined
by convolution. In general, however, the distribution functions of the £;
(i=1,2, ..., k) and of the — in case of independent random variables,
respectively, are not available. Therefore the stress values will be attempted
to be assessed from empirical values.

3. Estimating the deviation from the expected stress
by means of Tchebyshev inequality

The chief advantage of the assessment is that neither the load distribution
function nor the dependence degree of the £; needs to be known. Force values
Fli=1,2,..., k) at a given time will be determined on IV structures subject
to the same conditions,

Compiling measurements in a matrix T:

Iyp e Byp awe By

1 2 j N
T= = 7
; A (M
[T t,‘.j N TN
where:
t;; — value of the i-th force acting on the j-th structure, realizations of

&, being:
E = [tis tros v vv Bijs o vn Einde (8)
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Be the elements of € occurring in (4):

C=1T ¢3 vvv € oo ey V[ e(l)
Cip wee Cif eee € e(?)
: : : =1 ! 1 (9)
Csp +vv Csf v Cg e(s)
L p1 Cpj Cpr . C(P) -4
where:
p — the number of structure sections.

Using these symbols, the stress in the s-th section of the structure is
expressed by:

M(s) = C(s) - F. (10)

Be M(s) the j-th stress momentum due to external load in the s-th section
of the structure.

Using these symbols, the probability for the stress due to external load
in the s-th section of the structure at timef not to deviate from the expected
value by more than specified, can be determined by the Tchebysher inequality:

P[IM(s) — My(s)] < 2/ My(s)] > 1— (11)

Y
[

/.

4. Producing higher empirical momentums

The Tehebysher inequality contains first and second central momentums.
These can be produced as follows:

- ke 1 N n n
RS EIE MRS ML (12
iz Naiot ;151 ¢
where:
¢i(s) — the i-th element in the s-th row of C
nft  — the n-th column of T
@, — the operator of scalar multiplication.

The second central momentum is:

Mz(s)z éc(s)c,(S)[%g(n n]" 1 ‘%Z[n ZHZ
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where:

®, — an operator multiplying the dyad by a row vector from the left and
by a column vector from the right, i.e., producing a scalar.

The Tchebysher inequality vields a rather pessimistic estimation. Choosing
-3 ‘\If‘_,?\/j_,(s), that is, 4, = 3 then from (11):

1L 08888,

Therefore an estimation method offering closer approximation has to
be found. Closer estimations known from literature require the knowledge
of the central stress momentums of higher order. By definition, the third
central momentum is as follows:

i I 3
My(s) = E [ Sefs) s — _;.\;cxs)E(sf)} (14)
=1 [=1

where:

E(§;) = m; means the expected value of &
By virtue of the operational rules of polinomial multiplication and of expected
values:

k k S
Mys)= 3 3 X ¢fs) - efs) - ef)E[(& — mp) - (5 — m)) -
i=1 T:I =1 (15)

(& — m)] = BL[E{(E — m)(E — m)(& — m)}],

where:

E[(§; — m) (&5 — my)(§, — m,)] is element #;;; of a cubic matrix of kxkxk
size.

Taking all values of the running co-ordinates into consideration, a cubic
matrix is obtained with the third central momentum of the components of
random vector variable & along the principal body diagonal, the other ele-
ments meaning characteristics of the dependence of individual components.
@, - operator transforming the cubic matrix into one numerical value.

The multiplications will be done by vector operations, providing that
the double dyadic multiplication a 0 b 0 ¢ can be donein the following sequence:
first, dyadic multiplication of column vector a by row vector b and dyadic
multiplication of the obtained matrix by vector ¢ perpendicular to the plane.
Accordingly, the third central momentum of the stress due to external load




26 P. FUTO and 4. KERESZTES

in the s-th section of the structure at time t:

1 ¥(n n n 1 N Nin n
My(s) = By — > ]— | > > P|_
NZ=ltorot NS Ziltotot
1%%‘71]911 lg,vnnn](m)
Y ; B g i
NZSiltot o NZZ Sltotot
N N N
_1__7_.‘§:‘1’ S’(n p ]]
i ro e pr-t]
NSy pmi=iltot ot

where:

— the i-th column wvector of matrix T.

™

Depending on what kind of operator @,(s) is applied to transform the
cubic matrix into a scalar one, the third central stress momentum of the load
will be obtained in different sections of the structure. The procedure described
in (16) is rather laborious, while the cubic matrix is characteristic of any sec-
tion of the structure, thus yielding valuable information of the dependence

method.
Be
=& —m (17)
where the realizations of 1, are
ni=Adiys dige oo i o dinti=12, ...k (18)
and
dij = t;; — my. {19)

Thus, the new element will be generated by substracting from each element
of the matrix T of external loads the expected value corresponding to its row.
Thereby:

) =0 — 3" " =L S (S (20)
e INSldodod] N=Em 0T N

Thus, the empirical third momentum of the stress in the s-th section at time
t can also be determined by multiplying the realizations of the random va-
riables reduced to zero expected value by the transforming row vector for
the s-th section. In this procedure, however, no direct information of the
external load momentums and of their independence is obtained and only
stress momentums for the single section s will be available. Similarly to the
above, the fourth stress momentum for the s-th section is, by definition:
1 N [k 4
W) = S[Seed) (21)

N = E
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7. Estimation of the deviation from the expected siress
value by means of the method of A. WALD

A. Wald [2] made use of momentums M,(s), M,y(s), M,(s) to develop
the following estimation method:

P[M(s) — My(s) < d] > a, (22)
where:
|M(s) — M,(s)] — the deviation of actual stresses from expected ones
d — arbitrarily selected number for the stress dimension
a, — the lower limit of the probability for the above event.

Analysis yields two possible cases:

a) For
My(s) . M(s) (23)
FET )
then
=1 (24)
i.e., the Tchebysher inequality.
b) For
M, M -
2($) = M (s) (25)
2 d*
then

e st sl o
(d* — M3(s)+M,(s) — M3(s)

The following short numerical example proves the method of 4. Wald to
yield an estimation closer to the theoretical value. In the confidence interval
-3 VI\—/E;(_S—) let us examine, while assuming normal distribution, the result
by the described estimation method.

Be:
M{sy=0
My(s) =1
Ms)=3
4= 3 )G = 3
M,(s M, (s
e
i

3 . .
3 >¥1s valid and so
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a;=1— M, (s) — M3(s) _

4> — M3(s) -~ M,(s) — M3(s)

—1_ 31 — 09697,
3 —1P—3_1

Therefore

P[|M(s) — M,(s)] < d] > 0.9697, greater than 0,888 obtained by means of
the Tchebyshev inequality and closely approximating the theoretical value
0,997.

8. Estimation of the deviation from the expecied siress
value by means of the multidimensional Tchebyshev inequality

The above analysis determined the probability of the structure not to
fail in its different s-th sections. Nevertheless, safetv against failure of the
structure in its different sections is not equivalent to the safety of the struc-
ture as a whole. This were true only by meeting the overall distribution func-
tion of the stresses in each section. or, in case of estimation, of the overall
criterion. The whole structure — considering each section to be linear — can
be assessed by means of the multidimensional Tchebyshev inequality [3]:

P M) —M(Ly | . P M(s) — M(s) |
Pl <Ay R A Fgs
N UNIVI. VM, (s)
) , . 27
, V{;+‘l,;(p~1){’§j2;2—u} )
M) = M(p)| _ ) | =
’ ™~ pi =
. M(p) p
A; — the value of permissible deviation
p 5
u= Fi+23 Foyat A7t (28)
s=1 i<
0 = corr [M(i), M(j)]. (29)
Introducing the notation:
ks« VM, (s) = Z; (30)

further
D = [cov(i, /)] = E[(M() — M,(D)) - (M) — My(j))] (31)
t=1,2,..5p
i=1L2 ...,p
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the matrix of the standard deviation, then

[ 1 1 ]‘— nEa
U==|—. ..., | —
5 zp I z
| D S (32)
matrix of the )
standard 1
L deviation |} z,

Hence:

1) — M) < Z,. ... M (33)

Y-+ " (p—

If the expected value is zerc and a two-dimensional case is investigated, then
Equation (33) simplifies into:

P(IM0) < 2y M2) < Z) =1 [ R
. - (34)
- 1/ M) AL E - Afeov ML) M2) )
i 7373

(-

Since, in case of independence, the covariance is zero, the term in the relation-
ship to be substracted increases, thus leading to a more pessimistic estimation.
That is, in case of dependence the probability of the structure to hold will
inerease.

Conclusions

1. The n-th empirical central momentum of stresses due to external
loads can be produced by means of an n-dimensioned matrix.

2. Higher-order momentums may vield estimations closer than the
Tchebyshev inequality, for the same confidence intervals.

3. Realistic estimation of the probability of the safety against failure

d
e

of a whole structure is offered only by multidimensional inequalities.

Summary

Structures are generally exposed to stochastic loads. Several methods are presented
of siresssang the stresses if the distribution function of these loads is unknown.
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