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1. Introduction 

In general engmeermg practice the procedure of dimensioning is as 
followE: 

a) Determination of load parameters, from them determination of 
strpsses and ultimately that of the stress condition in all points of the struc­
ture. 

b) Experimental determination of the structural material characteristics 
with characteristics of the same units as the load parameters bearing in 
mind that the test results refer to uniaxial stress conditions. 

c) Co-ordination of the two parameter systems. 
The above characteristics are chosen in general as deterministic ones 

and the appropriate safety is achieved by safety factors leading to either 
over- or under-dimensioning. 

Recently, more realistic design methods are sought for. One fundamental 
criterion of taking real cunditions into consideration is to examine the random 
character of loads. 

2. Stresses on Bar Systems 

Structures that can be modelled with bars (e.g., the motor vehicle 
chassis) are generally subject to the foIlo'wing stresses: 

where: 

Ml' 
lVIdel 

lHkin 

the sum of working stresses on the structure 
constant load of the structure (e.g., dead load) 

(1) 

so-called kinematic stresses due to production and assembly m­
accuraCIes 
random stresses due to external loads 
random stresses affecting the other stresses (e.g., unevenness of 
road surface) 
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In earlier analyses, the sum of working stresses has been determined 
with loads considered as deterministic. Special analyses have been concerned 
with the determination of these stresses by means of considering dimensional 
inaccuracies as possible yalues of a random vector variable [1]. 

This paper will be concerned "with stresses clue to external loads. Con­
sidering external load values to be constant, stresses in a hyperstatic structure 
with n redundancies are expressed by: 

(2) 

"where: 

l\I(s) column vector of stresses 1Il different sections of the structure 
caused by external loads; 

E unit matrix: 
l\I matrix of stresses caused hy unit internal forces in the structure 

made statically determinate; 
R spring matrix depencling on material characteristics and geometry 

of the structure: 
column vector of stresses 111 the statically determinate structure 
due to external loads. 

Relationship (2) is also valid for statically determinate beams III the form. 

(3) 

Since 1\Io(s) can be produced as a linear combination of external loads, (3) 
can he written as: 

l\l(s) = AB(s)F = C(s)F (4) 
where 

(5) 

the column vector containing the external loads. 

B(s) the matrix constructed on the hasisof the structure geometry 
converting loads into stresses; 
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C(s) transforming matrix constructed on the basis of material charac-
teristics and geometry of the structure. 

From (4) it is obvious that the sum of working stresses can be produced as a 
linear combination of the external loads. Choosing the number of sections 
high enough, the stress-function - either linear or parabolic - can be re­
placed by stresses chosen as constant in each section s. 

Let the possible values of the probability vector variable 

s = r ;1 

l i: (6) '::of 

t I 
L "'::'/i .J 

be those assumed by F. Hence, possible values of ~i are the values of force Fp 
In knowlcdge of the distribution functions of the independent ~ i the 

distribution function of the linear comhinations of the ~i can be determined 
by convolution. In general, hO'wever, the distribution functions of the ~i 

(i 1,~,. , " k) and of the - in case of independent random variables, 
respecth-ely, are not available. Therefore the stress yalues 'will he attempted 
to he assessed from empirical values. 

3. Estimating the deviation from the expected stress 
by means of Tchehyshev inequality 

The chief advantage of the assessmcnt is that neither the load distribution 
function nor the dependence degree of the ~ i needs to be known, Force values 
F,-ji = 1, 2, , , ., k) at a given time will be determined on lY structures subject 
to the same conditions. 

Compiling measurements 111 a matrix T: 

[: 
... t1j 

'" J T= 
t"N ~ [ 

1 2 ] N ] , (7) 

... tl;j 

'where: 

tu - value of the i-th force acting on the j-th structure, realizations of 

~1 being: 
(8) 
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Be the elements of C occurring in (4): 

C =.- Cll C1j Cl/{ 
.. .- c(l) .. 

cil Co Cif.: c(i) 
(9) 

CS1 Csj CSf.: 

I 
c(s) 

CJlI C Jlj cpk L c(p) L ..J ..J 

where: 

p - the number of structure sections. 
Using these symbols, the stress in the s-th section of the structure is 

expressed hy: 
",:1(s) = C(s) . F. (10) 

Be 1I1)s) the j-th stress momentum due to external load in the s-th section 
of thc structure. 

Using these symbols, the probahility for the stress due to external load 
in the s-th section of the structure at time t not to deviate from ·the expected 
value hy more than specified, can he determined hy the Tchebysheu inequality: 

(11) 

4. Producing higher empirical momentuIDs 

The Tchebysheu inequality contains first and second central momentums. 
The,~e can he produced as follows: 

(12) 

",-here: 

Ci(s) the i-th element in the s-th row of C 
nit the n-th column of T 

<1>1 the operator of scalar multiplication. 

The second central momentum is: 

k k [1 N (n n) l\112(s) = ~ ~ Ci(S) Cj(s) -,-~ 
1=1 J=1 N n=l tot, 

[
IN (n n) 1 N N (n 1 )J = <1>0 - "" __ ""i;;:' ""i;;:' 

- -~ -?~/. ., 
N n=1 . tot N- n=l t:'1 tot 

1 N N (n 
-o-~~ 
N- n-l/=1 t o : )] ~ (13) 
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where: 

r/Jz an operator multiplying the dyad by a ro'w Yector from the left and 
by a column Yector from the right, i.e., producing a scalar. 

The Tchebyshev inequality yields a rather pessimistic estimation. Choosing 

I 3 fJf
2
(s), that is, I .. , = 3 then from (ll): 

1 
1- - = 0.8888. 

32 ' 

Therefore an e~timation method offering closer approximation has to 
be found. Closer estimations known from literature require the kno'wledge 
of the central stress momentums of higher order. By definition, the third 

central momentum is as follows: 

(14) 

where: 

E($i) = m i means the expected value of $i' 

By virtue of the operational rules of polinomial multiplication and of expected 
yalues: 

(15) 

where: 

E[($i - mJ($j - mj)($l - mJ] IS element tUl of a cubic matrix of kxk:<k 
SIze. 

Taking all yalues of the running co-ordinates into consideration, a cubic 
matrix is obtained with the third central momentum of the components of 
random vector yariable 1; along the principal hody diagonal, the other ele­
ments meaning characteristics of the dependence of indiyidual components. 
r/J 3 - operator transforming the cubic matrix into one numerical yalue. 

The multiplications will be done by vector operations, providing that 
the douhle dyadic multiplication a 0 b 0 c can be done in the following sequence: 
first, dyadic multiplication of column vector a by row vector band dyadic 
multiplication of the ohtained matrix by vector c perpendicular to the plane. 
Accordingly, the third central momentum of the stress due to external load 
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III the s-th section of the structure at time t: 

1 N N (n p n 1 
1 N 

N (n n 1: ) -:;;::E::E 1\.j2 ::E ~ 
I (16) ., 

N- n~l p~l t 0 o t . " n~l ;::'1 t 0 t 0 

2 N N 
N fn p :n -L -- ~ ..::E ~t ' 1\3 ./ t .i. '. ;:'1 p~l 0 0 

'where: 

- the i-th column vector of matrix T. 
t 

Depending on 'what kind of operator <1>3(S) is applied to transform the 
cubic matrix into a scalar one, the third central stress momentum of the load 
'will be obtained in different sections of the structure. The procedure described 
in (16) is rather labOTious, while the cubic matrix i" characteristic of any sec­
tion of the structure, thus yielding valuable information of the dependence 
method. 
Be 

iJi = ~i - 71l; (17) 

where the realizations of Y/i are 

(18) 
and 

(19) 

Thus, the new element will be generated by substracting from each element 
of the matrix T of external loads the expected value corresponding to its row. 
Thereby: 

1 N [n n n) 1 ,v l k. )3 1,:[5=W ~ =- c5d - 3() 3 7\/"';;;;" d d d 7\T ::E ~ ,() lt1 
h n~l, 0 0 h n~l 1~1 

(20) 

Thus, the empirical third momentum of the stress in the s-th section at time 
t can also be determined by multiplying the realizations of the random va­
riables reduced to zero expected value by the transforming row vector for 
the 8-th section. In this procedure, however, no direct information of the 
external load momentums and of their independence is obtained and only 
stress momentums for the single section 5 will be available. Similarly to the 
above, the fourth stress momentum for the 5-th section is, by definition: 

(21) 
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7. Estimation of the deviation from the expected stress 
value hy means of the method of A. WALD 

27 

A. Wald [2] made use of momentums .iHl(S), M2(S), Mis) to develop 
the follo·wing estimation method: 

P[iM(s) (22) 

where: 

IM(s) 
d 

Jfl(S)[ - the deviation of actual stresses from expected ones 
arbitrarily selected number for the stress dimension 
the lo·wer limit of the probability for the above event. 

Analysis yields two possible cases: 
a) For 

Jf2(S) J[,(s) 

then 

i.e., the Tchebysher inequality. 
b) For 

then 

d2 cl·! 
(23) 

(24) 

(25) 

(26) 

The following short numerical example proves the method of A. Wald to 
yield an estimation closer to the theoretical value. In the confidence interval 

: 3 V iH2(S) let us examine, while assuming normal distribution, the result 
by the described estimation method. 
Be: 

Ml(S) = 0 

i'v1z(s) = 1 

lHis) = 3 

d = 3 VM2(s) = 3 

J'\I12(8) M4(S) 
d2 > d4 

_1_ > ~ is valid and so 
32 34 
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ad = 1 - -----."-'--'-----'-'---
d'l 

=1 
3 1 

0,9697. 
(3 2 1)2-3-1 

Therefore 
P(I1'H(s) - lYIJ(s)! < d] ;;;, 0.9697, greater than 0,888 obtained by means of 
the Tchebyshev inequality and closely approximating the theoretical value 
0,997. 

8. Estimation of the deviation from the expected stress 
valne hy means of the multidimensional Tchehyshev inequality 

The aboye analysis determined the probability of the structure not to 
fail in its different 8-th sections. N eyertheless, safety against failure of the 
structure in its different sections is not equiyalent to the safety of the struc­
ture as a ·whole. This "were true only hy meeting the oyerall distribution func­
tion of the stresses in each section, or, in caSt' of estimation, of the overall 
criterion. The whole structure - considering each section to he linear - can 
be assessed by means of the multidimensional Tchebyshev inequality [3]: 

(27) 

).s - the value of permissible deviation 

(28) 

flU = corr ["vI(i) , .!1:lU)]. (29) 

Introducing the notation: 

(30) 

further 

D = [cov(i,j)] = E[(Nf(i) - Ml(i») . (MU) - M1U»] (31) 

i = 1, 2, ... ,. p 

j = 1, 2, ... , p 
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the matrix of the standard de-dation, then 

II 

Hence: 

P(J[(l) 

[~, ... , ~Jr 
""'I ""'p _ • 

I 
L 

[
Jll--I I 

(p 
- ------ _._-----_. 

D 
matrix of the 

standard 
deyiation 

29 

(32) 

1 

(33) 

If the expected yalue i;:: zero and a two-climen;::ional casc i~ inyestigated, then 
Equation (33) simplifies into: 

P (M(l) < Zl.J1(2) < ZJ '> 1 

1
/[ ~H~(l) 
I _ Zi 

1 r J:J~(l) 
2 l Zi z~ 

-1 [COY M(l). J[(2)~ 1 
------------

Zi· z~ J 

(34) 

Since, in case of independence, the coyariance is zero, the tt'rln in thc relation­
ship to be substracted increases, thus leading to a more pessimistic t'stimation. 
Thnt is, in case of dependt'l1cc the probability of the structure to hold will 
lIlcrease. 

Conclusions 

1. The l1-th empirical central momentum of stres:;es clue to external 
loads can he produced by means of an n-dimensioned matrix. 

2. Higher-order momentums may yield estimations closer than the 
Tchebyshey inequality, for the same confidence interyals. 

3. Realistic estimation of the probability of the safety against failure 
of a 'whole structure is offered only by muItidimemional inequalities. 

Summary 

Structures are generally exposed to stochastic loads. Se,'eral methods are presented 
of siresssang the stresses if the distribution function of these loads is unknown. 
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