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The phenomenon of halloon formation has heen the suhject of extended 
investigatIOns fro the last 100 years hut no exact description of it is availahle 
so far. Various experimental formulae have heen estahlished for the forces 
arising along the halloon, however, no calculation of its value taking into 
account all the forces involved has heen carried out as yet. Also, investigations 
on and experimental approaches of the phenomenon of the halloon were 
primarily concerned v,-:ith the spinning halloon, while work is hardly found 
in the literature discussing halloon formation in a shuttle. The reason for this 
may lie in the fact that halloon formation in a shuttle is influenced hy a numher 
of factors and thus it is a more complex phenomenon than that of the spinning 
halloon. 

Since neither the form of the shuttle halloon is known, nor are there any 
formulae availahle in the literature estahlishing it or the yarn tension, the 
determination of the yarn forces arising in weawing, he it with the help of an 
approximating formula, would he of considerahle interest in respect of hoth 
the numher of end hreakages and the improvement of fahric quality. 

In a previous paper an equation has heen estahlished for it in the form 
of a Legendre type elliptical integral hy solving the system of differential 
equations of the shuttle halloon. Let us now use the same equation to deter
mine the yarn force arising during winding-off the pirn, which appears to have 
a considerahle influence on the numher of weft hreakages. 

To hegin ,~-:ith, let us estahlish the function giving the yarn tension force 
arising at an arhitrary point of the plane curve of the halloon formed in a shuttle. 

Ohservations on the shuttle halloon have shown that the condition of 
equilibrium for any arch element of the yarn is determined hy the system of 
differential equations 
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Taking into account the initial conditions, the value of the integration con
stant Cl in the second equation can he determined. At the point A(O, H) 
of the halloon heing x = 0 

VI + y~2 
y~ 

Since at the point A(O, H) Yo lies in the direction of the yarn force So and 
considering that yo' = tg x o' the value of the left-side quotient can be deter
mined. 
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On the other hand, according to the first equation "with respect to the point 
A(O, H): 
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= So . sin (900 + )'0) = So . cos )'0 = So' Vo = Vo = c. 
So 

Multiplying the differential equations defining the condition of equilibrium 
for the yarn 

(
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and taking into account the values of the integration constants c and Cl 

r 
2 .. 

- S(x) = (J' ,~ • x 2 + g . x) - So 

the yarn force at any point of the plane curve of the shuttle halloon is 

(
W2 ) S(x) = So - (J. "'2' x 2 + gx . 

Thus, for a planar case, yarn tension force in addition to heing dependent on 
the momentary halloon radius, depends on yarn density, gravitational acceler
ation and on the angular velocity of the rotation. From function S(x) defining 
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yarn tension force it is seen - since the second term in the right side is always 
positive - i.e. 

gx) > 0, 

that the highest yarn tension force will always be found at that point of the 
balloon where the second term of the right-side expression is zero. However, 
this can only occur for x = O. Going backwards from the balloon apex A(O, H) 
along the axis y up to the point where the :radius of the balloon is at its maxi
mum, yarn tension force is found to be decreasing, which is evident, because 
the yarn lengths to be kept in equilibrium are also decreasing. 

The maximum value of the yarn tension force determined in this way 
is, however, a relative, i.e. a local extreme value, valid only in the range of the 
balloon height H -h. The maximum value of the yarn tension force may, 
of course, fall outsid!' this interval, just as in the present case. 

The extreme value of the yarn tension force S(x) may occur at any point 
x for which the first differential quotient of the function with respect to its 
variable x is zero, thus 
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dS(x) 
---= 

dx 
-(1 • (CO 2 . X + g) = 0 

whence 

while the second differential quotient of the function S(x) with respect to its 
variahle x is given as 

d2S(x) 
---'--'- = - (1 • co 2 < 0 

dx 2 

hence yarn tension force is found to he at its maximum at 

x=_L. 
co 2 

However, that point lies outside the range of the halloon height H-h, and 
the maximum yarn tension force at this point x is 

S(x)max = So - (1' -' - - - = So + . (
CO2 g2 g2) (1 • g2 
2 co 4 co 2 2 . co 2 

Remaining within the height of the halloon curve, maximum yarn tension 
will occur when x = 0 and the maximum yarn tension force at this point is 

S(x)max = S(l , 

to he measured in the apex of the halloon. 
Let us consider furthermore to what extent the initial yarn force So 

measured at the guide eye depends on the halloon height H-h, on the angular 
velocity, on the momentary radius measured at the winding-off point, on the 
yarn density and gravitational acceleration. 

The equation of the plane curve of the shuttle halloon during winding-off 
the yarn is of the form: 

where 

2Yo y-H=+---=
(1·co 2 ·B 

A =V(-!;f+ 2 

B = V(!2r + 2 

A 
k=-. 

B 

arcsin x~c arcsin ~ 

. {f ~; -f~:} 
o 0 



DETER,,}IlNATION OF THE YARN FORCE 19 

The root before the brackets in the right side requires a negative sign, 
since H > y and hence y-H is always negative. The right side is, thus, also 
to be of negative sign. First of all, let us consider the correctness of the nega
tive sign of the equation obtained for the balloon curve. Reducing the right-side 
elliptical integral to 
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whence the equation of the balloon curve takes the form: 
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Be arc sin A = z, then the derivative of the equation of the balloon 

curve 1-Vith respect to x: 

dy dy dz 1 
-=-.-= 
dx dz dx 

(f. (02 • B V [ I C J2 
l-k2 sin arcsin x : 

The value of the derivative at the guide being at the 
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Substituting the values of A, Band C gives 
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where Ho denotes the component of the tensioning force So along the axis 
in the hallo on apex. 

For the purpose of checking the results let us determine the value of 
the derivative for the apex A (0, H) of the halloon on the hasis of direct geo
metric considerations 

, ( dy ) (90 0 ) Vo Vo Yo = - = tg a o = tg + Yo = - ctg Yo = - V 2 2 = - - , 
dx x=o So - Vo Ho 

which is in agreement with the result ohtained and verifies the correctness 
of the equation estahlished for the halloon curve formed in a shuttle. 

Thus, the equation of the plane curve of the halloon formed during 
winding-off the pirn in a shuttle may he ·written as: 

arcsin r'1c arcsin~ 

y - H - - - 2Vo . {J~ -J~} 
- V(a' g)2 + 2 . a· 0)2(SO + Yo) Lltp Lltp' 

o 0 

This equation applies for all the curves passing through the apex A( 0, H) 
of the halloon. From these curves the one also passing the momentary '~inding
off point B(rx, h) is to he chosen. For this curve 

arcsin r=1C arcsin ~ 

2Vo {J dtp J dtp} 
h - H= - V(a ~·2' a. 0)2. (So + Vo)- . Lltp - Lltp 

o 0 

The last two equations together give the equation of the curves passing 
through the points A(O, H) and B(rxh), hy which the functional relationship 
hetween the yarn force So measured at the guide eye in the apex, the halloon 
length H, the angular velocity 0), and the yarn -c density is also given in an 
implicit form. 

Denoting the common coefficient of the integrals hy E, i.e. 

2Yo = E 
V (a . g) 2 + 2 . a • co 2 • (S 0 + Vo) 

furthermore writing for the limits of the elliptical integrals 
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whereby 
rp K 

H - h = J' drp -f drp . 
E iJrp iJrp 

o 0 

The second integral in the right side is constant, i.e. 

K 

J~: = G 
o 
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H-h +G=fdrp = F(k,rp). 
E iJrp 

o 

The equation thus obtained has to be solved for rp. The Legendre type 
elliptical integral of the first kind in the right side of the equation can be 
represented directly with the use of Table F. 

Assuming V o' the component of the yarn tension along the axis in the 
apex, in the left side function, to be measured, thus a given value, and by eli
minating the initial yarn force, then, since 

(
r I g) 
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and substituting A in the equation by its value, furthermore, raising both 
sides to the second power, we get 
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whence the yarn force arising at the guide eye 

Thus the equation 

y= 

is of the following form 
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Carrying out the operations prescribed and reducing on the left side, 
leads to the equation 

y = Y a + b . cosec 2qJ '+ C 

Representing both the function 

y = F(k, rp) 

and the function obtained last in a rectangular coordinate system of the same 
axis (rp, y), the curves shown in the figure are obtained. The abscissa rpm of 
the point of intersection M of the curves gives the approximate value of the 
root of the equation. In order to determine the root with the required accuracy, 
use can be made of an approximate method, as the chord method, or Nev,,-ton's 
tangent method. 

Having the value of rpm approximated with the accuracy required, Vo 
being measured, the initial yarn force 8 0 arising at the guide eye can be cal
culated on the basis of (1). 

Finally, replacing the expression of the initial yarn force 8 0 given by 
(1) in the formula of the tension force 8(x), the yarn force at any point of the 
balloon curve formed in a shuttle is obtained in the form 

The space curve of the shuttle balloon "will be the subject of further 
investigations. 

Summary 

An approximate formula is given for calculatiug the yarn force arising during winding-off 
the pirn in the shuttle of a loom. 

For the present, the balloon formed in a shuttle is considered as a plane curve and yarn 
force is determined for that case. 
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