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In weaving, & balloon is formed by the yarn unwinding from the pirn
in the shuttle. At first the balloon is of moderate height, it has, however,
a tendency to increase. With full pirn the maximum diameter of the balloon
is small but with unwinding its length may attain that of the inner diameter
of the shuttle wall.

Since yarn tension and the number of weft breakages, thus loom effi-
ciency are affected by changes in the form of the balloon curve, it is of interest
1o know exactly these changes.

Let us derive the equation of the balloon curved formed by the unwind-
ing varn in the shuttle.

The forces acting on the small arch element ds of the yarn balloon are
as follows:

a) centrifugal force,

b) foree of gravity.

¢} tensions stretching the arch element ds,

d) air resistance,

e) friction on the shuttle wall.

Be ¢ the mass of unit length of the varn; ds the length of the arch ele-
ment; g the gravity acceleration; o the average angular velocity of rotation
of the arch element: S and S’ the stretching forces acting at the extremities
of the arch element; x and 2" the angles between the stretching forces and the
co-ordinate axis x.

Since the mass of the yarn element ds is ¢ - ds. the force of gravity acting
on it is ¢ - ds - g. Be x the distance between the arch element ds and the rota-
tion axis, then the centrifugal force acting on the arch element amounts to
o - ds - © x, furthermore two stretching forces of opposite sense, S and S =
= S - dS are also acting on the arch element, causing the yarn to be steadily
stretched. Finally, the air resistance acting on the arch element is proportional
to the length of the arch element and — because of the high velecity — to

th

the n™" power of the velocity, thus ¢(xw)" - ds, where ¢ is a factor proportionate

to the air resistance.
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In order to determine the equation of the yarn curve let us assume that
neither friction nor air resistance occur, thus for the purpese of calculation
the yarn curve can be considered as a plane curve.

Be the y axis of the co-ordinate system along the axis of the pirn and
take the arch element ds of the yarn at the point P(xy).

The arch element can only be balanced if the algebraic sum of the
forces acting on it is zero, thus for the components of the forces along the
axes x and y the respective conditions

TX =0
IV =0

et

are to be satisfied.
Rendering positive the component of the force S along the axis x, the
force will be of opposite sense

Gods. w® x4+ 0.ds.g — Scosz+ S cosa” =10
— Ssinx - S sina’ = 0,

where x and 2 are angles betwen the forces S and S” and the positive direction
of the axis x. Expanding in series the functions S’ cos «’, and S’ sin ”:

S cos o’ = Scesz—}—-—d——(S-cosa)dx—f—...

dx

S’ sin o’ = Ssin o —-{-—EZ——(S-sinx)dx e
dx

respectively.
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Thus, the equilibrium equations can be written as:

oc.ds.o’ x -0 ds g+ (S - cos a)dx = 0 and

Since the stretching forces S and S’ are of the divection of the tangent
to the curve and the tangent of the tangent direction is tg o = ¥/,

1 1
COS 8 == f—t
V1 4+ tg2x V1 -4 y2
L -
1 te v’
SIn & == == = == =
V14 ctg?a Il +ig?ax VI 2

the equilibrium equations take the follewing form:

.
o.ds. % x - o. ds. c-;-i-[s- T;_—]fzx: 0
dx 14y
dls Y ]dx =0
dx L [
Integrating the second equation along x
Sy
E = C;.
V1 4y '
And from the first equation:
G* ds (% -+ g) mi[: 5 :]: 0
% dx [TT+7 )
Since
d .
_s_._._ll _;_.,},’2_
dx
d S
g- 1*"“'“'-5‘“”-—%*——7——"*—:0.
V157" m &)+ [H+y,2}

Integrating the latter equation along x:
~ P— S
Co — GJ (0)2.15 + g)l,]. _T-}’E dx = T .
From the former equation, however,
S ¢y
Y1+ y2 ¥
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thus
cy — Gj(wzx Ty de =22
y

The latter equation is the differential equation of the balloon curve
formed by the yarn in the shuttle.
Integrating the equation along x:

,"’ 5 C
—o(wx L gl +y2= 1 -y
' o i 2
}»
a second order non-linear but incomplete differential equation.
T 1
.. . dp
With the transformations y’ = p and ' = ——
dx.
R — ¢y dp
olw’x -+ g)/l + pP= —= + —«I—,
g : q
p? dx
or
" d G " ‘
__:‘mhpv*_n_ - . (2% + g)dx.
Pyl +p? 51
Substituting the left side by p = shu
chu du G AP
| e = —— | (0% - ),
JoshPul + shu ¢y
or

al 1 p
du 5 ‘
[ e . l (w?x - g)dx.
Josh?u ¢4

After integration we may write:

) —5 P

; L1 sh?u o o
—ethy = — o % oox | Loy
shu e, 12 3

1 o (o 2
—— b ] = e x2 b gx ) - ocyl .
s 5 & 3
3 e, |2
whence
, dy 1
)‘ — —-——-]’ = .
ax G i 0)2 N : o
— e 2 gl e — 1
5 8 €3
c; 12

The equation of the halloon plane curve is of the form:

y = | +~ K.
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The function under the integral below the root contains the fourth degree
expression of the variable x, thus the integral is elliptical. In order to transform
it to canonical form let us determine {irst the values of the integration constants

¢y, ¢ and K.

Since in the apex of the balloon x = 0,

‘{1 32
'/

y

= ¢g.

However, y' = tg o represents the direction tangent
the point 4(0. ) and along the peak tension S, thus

of the tangent at

1
V1 +tg2x cos o 1 1
g sin % sin o sin (90° - v,)
cos

1 1 S,
B I = = — ==
s v v I 8

COs Yy -0 0

o

we may write

. . V -
= Sysin (90° 4 v,) = S,co8y, = S, * —S—G— =V,
0

= C3.

3

Finally, let us calculate the integration constant K from the equation
of the balloon curve. According to the equation of the balloon curve, at point

A0, H)
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furthermore
,L; 7
[ Gx
y o= - - - K.
{
T o (o
R
a c; L2
From the difference of the equations
3
{ dx
y—H=|-— :
! c [ w? i S 2
’ [“— a? g — —=| —1
§ T LV, L2 V,
or
= |- dx +H.

[ w? S,

I ———

;/ 0

The transformation of the elliptical integral te canonical form requires
polynomial contained in

)

|

the determination of the roots of the fourth-degree
the denominator. Resolving the polynomial into factors we get
! 22 n N -
¢ [ ? , S (o | S
AR N I TP B Y Y
v, |2 V, Vol 2 v,
Summarizing the roots of both factors we may write:
r S . v
o = Ny
: L 0
X = = ,/ o 20 PO
2 w? o w?

where from the double sign under theroct theupper one relates to the first
factor of the fourth degree polynomial, while the lower one to its second
factor.

V, being the component of the peak tension S, along the axis y, there
is always ¥y = S, thus the expression under the root is always positive, and

consequently the fourth-order polynomial considered has four real roots.

Writing the roots in detail
/

g [ &
A , g1 9.
Frlo= ——— | ||+ 2 5
w? w? g w?
2 +
- S / i) 9. SO ' VD
z 2 o w?
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Let us determine the order of magnitude of the roots. Be the highest
root denoted by a,, and the lowest one by a;. For the sake of shortness intro-
ducing the notations

A4 = 9. Se= Vo
G w?
B = 5. St ¥
w? G w?
and
c g
[
2
we get
;1‘1,2 m ——C ::: .4
and since B >> 4, the roots are, in order of magnitude:
a,==x,= —C— B
ay=1x,= —C — A
g =1x, = —C -+ A
Gy = x3= -‘C‘%“ B-
Thus, in the order of magnitude given, a; < a, < a5 < a,.
For the purpose of transforming the elliptical integral to canomnical
form, be
= Vay - ags 4 ¢ @y and
m, = l - a,, , where
Qo= dy— @y = B — A4

gy ==a,— a3= B — A,
With the use of the same
m; = 1(—_:1———{——-—B72 = A -+ B and
m,=1(B — A= B — A.

If the values m; and m, are known, the modulus of the integral is given by the

transformation:
5 m, — m, 24 A 1
— == Do mm— T~ -
ml ‘;" mz 2B B

as B > A4.
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If furthermore

and
—\,’h—-—‘—'_
Ty == [ @1 " Aoy
n,= Ja; - ay, and

n, — N
noe==—2——3%  then
1

Tlvz - nl
n=V(B—A)(BLA) =B - &
ny =B~ dA)(B_d) =B — 2

0

1= e = 0.

21 B — 42

In order to transform the elliptical integral to canonical form, let us
introduce the transformation:
sing —n

1 1
x:——-((l3—[‘(12)‘:"_(a’3_a‘2).m.
5 2 1 —n - sing

as
x= —C -+ A4sing.

For obtaining the canonical form of the elliptical integral, let us write
in the denominator of the function

y= dx +H

— - ; —
2t g —-—S_i+1”~“_—(” x2+ng- S0 3 _’-1]
2 2 v, | 2 Vo T,

&

™
—

Q
e

=

(34
O
‘.)

Va

the polynomial under the root in form of a root factor. Eliminating the factors

of the quadratic terms:
x

y— ] ” : dx +H
7o Vie — x) (x — x0) (x — 2) (v — x4)
2V,
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substituting the values of the radicals x, x,, x; and x,

o, dx B
o ©? J Jx+C—A)(x+C+A)(x+C— B)(x+C-+ B)
Using the transformation x = —C -+ A sin ¢ for the integral, and since

dx = A cosgpdy

. x+C
arc sm
2V, [ Acosgdyp o
- . -+
il ow? J V(dsing — A)(Adsing + A) (4dsing — B) (Asing — B)
arc sz’n—r%—
or
arc sin X—C
21 i A g s
y:_pe ‘ Acosepdy +H
o o / (A V(A
i A> B2 sing — 1| |-~ sing -+ L{(sing—1)(sin¢p-+1
|
arc sin -(—4-
i.e.
arc sin x=C
-‘) 5 -l ; -
y:“Vo Acospdg g
o w? 42
4B (* sin? ¢ — 1] (sin?2¢@ — 1)
B2
arc sin e

after root extraction and simplification

.. x+C
arc sin
317 ”» 5,
T e =
2 m
/ B°1/(A csin? @ — 1| - (—=1)
“c B
arc sin K‘
substituting the value of the modulus —JB— =k
arc sin X
) A
=2V . J do + H.
 ow'B V1= i2sin?g

arc sin ¢
c —
A

By this transformation we obtain the canonical form of the integral,
which is a Legendre-type elliptical integral of the first kind.
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Thus, the equation of the balloon plane curve can be described by a
Legendre-type elliptical integral of the first kind, which can be constructed
with the help of Table F for elliptical integrals.

With the usual Legendre-type notation and in the case of a function
of the following form

. do

= | et = F(y, k
: 1 1 — K2sin? ¢ (1. &)

0

7 can be obtained from the expression

n == a’m (‘u, k)‘
Since furthermore
I} O 5
J dg j dg 0 do -
VT — 2 sin2ep V1 — R sin?g J v k2 sin? ¢
3 4 4]
B =
. ‘ dy _ do
) 1 — k*sin? @ l hlbw—__z?’_énr o7

hence the equation of the balloon plane curve

arc sin x+C
h A
< il ~
C— 27 o . J dg&
= r . :
ocw?B V1 — Ksin? g
arc sin—g-

can be written in the following form:

. C
arc sin arc sin —
A

-2 1T et | e
o’co2B 11 — k” sin? @ V1 = k2 sin®

Using again the notation

V1 — k2 sin? ¢ = Ag
we get

arc sin 2= are sin <
; L
A

g 2V [y 2V, dg
i ' ow?B Ag cwtB Ay
0 0
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or by deriving the integrals in the right side

arc sin x+C
A

9P pfaresin EEC kz_»:i_}
Ag « A B
and
arcsin—c—
A
J ﬁ:Farcsin-;, h:é—]
Ag ; A B

0

the Legendre form of the equation of the balloon curve is obtained:

21 { x = C A 27 ( C A
;‘.:I‘I"‘r‘_ﬂ_ﬁ_F[arCSinx‘—’ i __iO__F arc sin — . j— .
cw?*B | A B cw?B A B

On the basis of the equation of the balloon curve formed by the unwinding
varn during weaving the tension arising in the weft yarn can be caleulated.
Determination of the tension will be discussed in a further paper.

Summary

Going out from the conditions of the dynamical equilibrium of the weaving balloon,
the equation of the balloon plane curve formed by the unwinding yarn during weaving has
been determined.

It is seen that even the equation of the balloon plane curve formed by the unwinding
varn in the shuttle during weaving cannot be derived by means of elementary functions, With
an adequate transformation the canonical form of the curve can be obtained, a Legendre-type
elliptical integral of the first kind.

References

. Knyora, S., Wapa, W.: Journal of the Textile Machinery Society of Japan, 1962, 1—57.

. Carxins, E. W. S.: Textile Industries. 1962. 68—71.

. Gorski, B. E., Kreme~nsteIw, L. L. Analizi szintez kulacskoviih mehanizmov szucsetom
ritvkov. (Invesztija viiszsich ucsebnith zavedenij Tehnologija legkoj promti.) Kiev,
1963. 6/30. 113122,

4. Kimura, S., Wapa, Y.: Journal of the Textile Machinery Society of Japan, 1962. 1—56.

L

Dr. Béla ‘Greca, H-1521 Budapest

D Periodica Polytechnica Transport Eng. I/2.






