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Abstract

Known that the occurrence of shear stress is the result of

the momentum exchange of particles (molecules in the case of

gases), which takes place between the superimposed layers due

to the thermal movement. This means that the forces corre-

sponding to shear stress are arising actually in a very thin layer

whose thickness is about the order of magnitude of the mean free

path of the particles, so they are no surface forces in the strict

sense, which is neglected in most cases.

We will show that there exists such a macroscopic flow at

which this neglect is not allowed.
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In terms of the well known Newtonian fluid friction law shear

stress arises between two superimposed moving fluid layers

Fig. 1a which is given by the formula

τ = µ
u

dy
(1)

However, it is also known that the occurrence of shear stress is

the result of the momentum exchange of particles (molecules in

the case of gases), which takes place between the superimposed

layers due to the thermal movement [1–4] This means that the

forces corresponding to shear stress are arising actually in a very

thin layer whose thickness is about the order of magnitude of the

mean free path of the particles, so they are no surface forces in

the strict sense, which is neglected in most cases.

We will show that there exists such a macroscopic flow at

which this neglect is not allowed.

Let us consider a non-stationary parallel planar flow accord-

ing to Fig. 1a and Fig. 1b and write the equation of the dynamic

equilibrium of the fluid element according to Fig. 2, temporarily

excluding the consideration of the momentum exchange zone:

ρ dx dy

(
ut + uyt

dy

2

)
= µ

[(
uy + uyy dy

)
− uy

]
dx (2)

where ρ denotes the density, µ the dynamic viscosity, u the ve-

locity. After simplification and introduction of the kinematic

viscosity

ν =
µ

ρ

we obtain the differential equation

ut +
dy

2
uyt = νuyy (3)

Given the fact that dy is differentially small, therefore it can be

assumed that in the limit it equals zero, after rearranging we

obtain finally the equation:

νuyy − ut = 0 (4)

According to the criterion given in the appendix this is a

parabolic partial differential equation, such equations describe

however – as it is known – effects with infinite velocities of prop-

agation (their characteristics slope is infinite). However, this
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Fig. 1.

Fig. 2.

means that – regardless of relativistic considerations – Eq. (4) is

untenable.

The situation is different when using Eq. (3) the boundary

transition will not continue to dy = 0 on the grounds that dy

is not considered as a differential in the mathematical sense.

Namely, we consider that the chosen dy thickness of the fluid

element can’t be less than the ξ thickness of the standard surface

layer from the viewpoint of the momentum exchange (Fig. 2),

otherwise the forces corresponding the shear stress could not

form. As it is shown in Appendix 2 this thickness can be re-

garded as approximately the mean free path of the molecules

between two successive collisions:

dy = ξ (5)

thus we obtain from Eq. (3) the following equation:

νuyy = ut +
ξ

2
uyt (6)

If we assume that this is the laminar flow of a constant density

gas, then with further adoption of the known relationship of the

kinetic theory of gases:

µ = 0, 499ρcξ1 (7)

i.e.

ν =
µ

ρ
= 0, 499cξ (8)

where c denotes the mean velocity of the thermal motion of the

molecules we obtain the following hyperbolic equation:

0, 499cξuyy −
ξ

2
uyt = ut (9)

If we take with good approximation that 20, 499 � 1, 0 we ob-

tain:

cuyy − uyt =
2

ξ
ut (10)

It is well known that the hyperbolic equations describe phe-

nomena characterized by finite propagation velocity. The gen-

eral determination of the propagation velocities can be carried

out with the well-known method of characteristics from the the-

ory of hyperbolic equations. Since the purpose of the paper does

not extend beyond the definition of the problem, we restrict our-

selves to the illustrative specific solution of the Eqs. (4) and (10).

Eq. (4) with the initial condition u (y, 0) = 0 and constraint

u (0, t) = u01 (t) results in the solution (11)),

u = u0 erfc
y

2
√

vt
(11)

which requires an infinite propagation velocity, because the er f c

function takes a finite positive value for each 0 < t < ∞ and

0 < y < ∞ values.

A possible solution to the Eq. (10) is

u = C′e
1
ξ

(ct−y)
(12)

where C′ is a constant according to the initial and boundary con-

ditions, which is uninteresting from our point of view. Function

1See: Dr. Simonyi Károly: „Kinetikus gázelmélet, klasszikus statisztika”

Egyetemi Nyomda, Budapest, 1949., p29, formula (15) etc.
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(12) describes a transverse “wave” (with reference to the for-

mation of shear stresses, but no real wave in the true sense of

the word) with c velocity. Given the fact that at the temperature

of 15˚ C the average molecular thermal velocity for oxygen is

474m s−1, for nitrogen 506m s−1, the resulting propagation ve-

locities for air appear to be in a plausible relationship with the

speed of sound (longitudinal wave) in the air at the same tem-

perature (340m s−1).

After all the above, we write the x directional component of

the Navier-Stokes equation for the here considered constant den-

sity unsteady flat flow:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

∂U

∂x
−

1

ρ

∂p

∂x
+ ν∆u,

where in our case p is constant, the gravity component
∂U

∂x
= 0,

while the y and z directed velocity components, respectively v

and w are also equal zero.

After substitution, taking into account the usual interpretation

of ∆ and changing the notation of the derivatives according to
∂u

∂y
= uy and

∂u

∂t
= ut we get the following equation

νuyy − ut = 0 (13)

which is identical to the untenable Eq. (4). Ultimately, New-

ton’s law which is considered valid regardless of the geomet-

ric dimensions, in the case of application of the Navier-Stokes

equations as the starting point resulted in the same untenable

differential equation, such as the less general, physically more

descriptive approach.

All in all, it seems that a revision of the the Navier-Stokes

equations cannot be avoided, or there must be at least such crite-

ria established which can secure that the application is allowable

from the point of view of the sufficient accuracy of the results

obtained in the specific cases characterized by the initial and

boundary conditions.

The urgent topicality of the present paper is supported by an,

in our view, unacceptable aim practically quoted from an En-

glish journal from the year 2003, Mechanics & Thermodynam-

ics, Journal of Mathematical Fluid Mechanics (Journal no. 21.

Springer Verlag): Description, Aims and Scope

The Journal of mathematical fluid Mechanics is a forum for

the publication of high quality peer reviewed papers on the

mathematical theory of fluid mechanics, with special regards to

the Navier-Stokes equations. As an important part of that, the

Journal encourages papers dealing with mathematical aspects

of computational theory, as well as with applications in science

and engineering.

Appendix

1. The criterion of the type of the here considered differen-

tial equations

Let us consider a differential equation of the type

Auyy + 2Buyt + Cuyy + auy + but + cu = f (y, t)

where A, B,C, a, b, c are coefficients independent from y and t,

f (y, t) is a given function. If we form the discriminant

δ = AC − B
2

the equation is elliptic, parabolic or hyperbolic according to

δ = 0

In the case of Eq. (4) we get

A = ν; B = C = a = c = 0; b = −1, that is

δ = ν.0 − 02 = 0, namely Eq. (4) is parabolic.

In the case of Eq. (10) A = c; B = − 1
2
; C = a = c = 0; b =

− 2
ξ
; f (y, t) = 0, wherewith

δ = c.0 −
(
− 1

2

)2
= − 1

4
, which means that Eq. (10) is hyper-

bolic.

Fig. 3.

2. Reflections on the assumption dy = ξ

Let us consider a plane at a height of y according to Fig. 1b.

The shear stress acting on its each side, but in opposite direction

according to Newton’s law is

τ = µ
u

dy
(14)

where the dynamic viscosity is given by the kinetic theory of

gases by the formula

µ = 0.499ρcξ (15)

In this formula ρ is the density, c is the average thermal veloc-

ity of the molecules, ξ is the mean free path of the molecules

between two successive collisions.
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In the majority of cases we neglect the fact that the force cor-

responding to the shear stress does not act in reality on the sur-

face, but on a layer whose thickness is about ξ and covers the

surface on the side where the shear stress is considered to act

(Fig. 1b).

If we now examine the dynamic equilibrium of a fluid ele-

ment, in which the inner layer thicknesses belonging to bound-

ary surfaces in height y or y + dy cover each other exactly, then

dy must equal ξ and in the case of larger scales the impulses

apparently generating shear stress act on the entire mass of the

element. Upon further reduction of dimension dy the number of

those molecules, which pass through the fluid element without

collision and so without impulse emission, increases (Fig. 3).

Designations

x, y, z space coordinates

u, v,w velocities corresponding space coordinates

t time

ρ density

ν kinematic viscosity

µ dynamic viscosity

ξ mean free path of the gas molecules c mean thermal ve-

locity of the gas molecules

C constant

p pressure

A, B,C, a, b, c constants

erfc = 1-erf

erf error function

1 (t) unit step function

u0 velocity step on the boundary surface (x = 0; y = 0 ÷∞)

at t = 0
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