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Abstract
This paper presents distributed parameter dynamical mod-

eling capabilities of single-mast stacker crane structures. In 
the frame structure of stacker cranes due to external excitation 
or inertial forces undesirable structural vibrations may arise. 
These vibrations reduce the stability and positioning accuracy 
of stacker crane and causes increasing cycle time of storage/
retrieval operation. Thus it is necessary to investigate of these 
vibrations. In this paper the dynamical behavior of single-mast 
stacker cranes is approximated by means of distributed param-
eter models. The first model is a cantilever beam model with 
uniform material and cross-sectional properties. This model is 
used to demonstrate fundamental properties of Euler-Bernoulli 
beam models. The second model is cantilever beam model with 
variable cross-sectional properties and lumped masses. The 
eigenfrequencies and mode shapes of this mast-model are deter-
mined by means transfer matrix method. In the third model the 
whole structure of single-mast stacker crane is modeled. Beside 
the eigenfrequencies and mode shapes of this model the Bode-
diagrams of frequency response function is also calculated.

Keywords
distributed parameter dynamic model · Euler-Bernoulli beam 

· transfer matrix method · stacker crane

1 Introduction
The advanced stacker cranes in automated storage/retrieval sys-

tems (AS/RS) have the requirement of fast working cycles and reli-
able, economical operation. Today these machines often dispose of 
1500 kg pay-load capacity, 40-50 m lifting height, 250 m/min veloc-
ity and 2 m/s2 acceleration in the direction of aisle with 90 m/min 
hoisting velocity and 0,5 m/s2 hoisting acceleration. Therefore the 
dynamical loads, inertial forces on mast structure of stacker cranes 
are very high, while the stiffness of these structures due to dead-
weight reduction is relatively low. Thus undesirable structural vibra-
tions, mast-sway may arise in the frame structure during operation.

These vibrations reduce the stability and positioning accu-
racy of stacker crane and causes increasing cycle time of stor-
age/retrieval operation. Thus it is necessary to investigate and 
predict of these vibrations.

Practically the mast structure has two fundamental configurations: 
the so-called single-mast and twin-mast structures. In our work 
we analyze single-mast structures since this configuration is more 
responsive to dynamical excitations. A schematic drawing of single-
mast stacker crane with its main components is shown in Fig. 1.

In order to realize the dynamical investigation of structural 
vibrations several kinds of models can be chosen with different 
kinds of results, different application areas and different approx-
imation accuracy.
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Fig. 1. Single mast stacker crane
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In our work the eigenfrequencies, mode shapes and trans-
fer functions of single-mast stacker crane frame is determined 
by the help of distributed parameter models. The area of dis-
tributed parameter dynamic modeling has a very extensive 
literature in dynamical investigation of engineering structures 
(Bashash et al., 2008; Aleyaasin et al., 2001; Zollner, Zobory, 
2011a; Zollner, Zobory, 2011b) as well as stacker crane frames 
(Bachmayer et al., 2008; Bachmayer et al., 2009; Bopp, 1993; 
Dietzel, 1999; Görges et al., 2009; Oser, Kartnig, 1994; Reis-
inger, 1998; Staudecker et al., 2008).

The aim of this paper is to generate a basic dynamic model 
with good accuracy. In the further steps of our research this 
model is applied to verify the accuracy of other simpler models 
e.g. multi-body models with few degrees of freedom. The main 
parameters of investigated stacker crane are shown in Table 1.

2 Cantilever prismatic beam model
The simplest mast model of single-mast stacker cranes is 

the cantilever beam model with uniform material and cross-
sectional properties along its length. This model with its main 
parameters, cross-sectional and material properties is shown in 
Fig. 2. The deflection function of beam is denoted by u(y,t), A1 
is the cross sectional area, Iz1 is the area moment of inertia, E is 
the modulus of elasticity and ρST is the mass density.

The governing equation for transversal vibrations of this 
beam is a fourth order partial differential equation (PDE):

This is the so called Euler-Bernoulli beam theory equation 
for free vibrations. Now let’s assume that the solution of equa-
tion (1) in case of standing wave solution is separable into time 
and space domains:

where X(y) denotes the spatial mode shape function and T(t) 
represents the time-dependent coordinate. Substituting equa-
tion (2) into equation (1) yields two separated equations:

where α2 is a separation constant. With the denotation

The general solutions of the two ordinary differential equa-
tions (ODE) presented above are

respectively, where A, B, C, D, E, F, are constants of integration 
determined by initial and boundary conditions. The first solution 
shows that α corresponds to the frequency of vibration, while equa-
tion (7) gives the general mode shapes. During determination of (7) 

Denomination Denotation Value

Payload: mp 1200 kg

Mass of lifting carriage: mlc 410 kg

Mass of hoist unit: mhd 470 kg

Mass of top guide frame: mtf 70 kg

Mass of bottom frame: msb 2418 kg

Mass of entire mast: msm 8148 kg

Lifted load position: hh 1-44 m

Length of sections:

l1 2,9 m

l2 3 m

l4 3,5 m

l6 11,5 m

l8 29 m

l9 1 m

Cross-sectional areas:

A1; A2 0,03900 m2

A4; A6 0,02058 m2

A8; A9 0,01518 m2

Second moments of areas:

Iz1; Iz2 0,00152 m4

Iz4; Iz6 0,00177 m4

Iz8; Iz9 0,00106 m4

Tab. 1. Main parameters of investigated stacker crane
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equation (4) can be simplified as:
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A1, ρST

y

x

y

dy ( )t,yu

h

Fig. 2. Cantilever prismatic beam model of stacker crane mast
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we used the S(.), T(.), U(.), V(.) Rayleigh functions. With this form 
the determination of unknown C, D, E, F constants of mode shapes 
will be very simple. Rayleigh functions can be expressed as:

Some useful properties of Rayleigh functions are:

Eigenfrequencies of vibrations can be determined by means 
of boundary conditions. Boundary conditions regarding to 
clamped end are

● X = 0 (deflection is zero),

● 

Boundary conditions regarding to free end are

● 

● 

The general form of deflection function, rotation angle, 
bending moment and shear force are:

From the boundary conditions of clamped end:

From the boundary conditions of free end:

The nontrivial solution of (12) exists when the determinant 
of coefficients vanishes. With this the following frequency 
equation can be determined.

The first three roots of frequency equation are (kh)1 = 1,875, 
(kh)2 = 4,694, (kh)3 = 7,855. By the help of these roots the 
eigenfrequencies can be calculated with substitution in the fol-
lowing equation.

The unknown constants of mode shapes can also be deter-
mined with substitution roots into (12) and solution of the 
resulted system of equations.

3 Cantilever beam model with multiple 
sections and lumped masses
In our second model (see in Fig. 3.) the mast of stacker crane 

is modeled as a cantilever beam with variable cross-sectional 
properties and lumped masses. The position of lifted load can 
be varying along the mast. During our calculations, without the 
loss of generality we take the lifted load into consideration in its 
uppermost position. As can be seen in Fig. 3. the mast is divided 
into prismatic sections, to solve these kinds of problems in most 
cases the method of transfer matrix is used (see in Ludvig, 1983).

(8)

(12)

(13)

(14)

Fig. 3. Cantilever beam model with several cross-sections and lumped masses

(rotation angle is zero).

(bending moment is zero),

(shear force is zero).
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The governing equations of section-wise uniform beam 
model must be generated according to every sections (see in 
Fig. 4.). During investigations the following assumptions and 
denotations are applied:

● the cross-sectional properties (Ai, Izi) inside the sections 
are constant,

● the length of i-th section is denoted by li, the position 
of investigated differential beam element (y) is measured 
from the initial point of i-th section,

● the deflection at endpoint of i-th section is denoted by Xi, 
the rotation angle is ϕi, the bending moment is Mi and the 
shear force is Vi.

With the deflection, rotation angle, bending moment and 
shear force respectively the so called state vector can be 
defined. This state vector is shown in expression (15).

Let’s apply the next simplifying relations.

With the denotations shown in (16) the differential equation 
of mode shapes and its general solution according to i-th sec-
tion can be expressed as follows.

In order to calculate the eigenfrequencies of the model we 
have to determine relationship between state vectors accord-
ing to initial point and endpoint of i-th section. If we know the 
components of state vector at the initial point of i-th section, 
then we can determine the unknown coefficients of this section 
applying the special properties of Rayleigh functions.

Now we can define the general relationship between state 
vectors according to both ends of i-th section. This relationship 
in matrix form is expressed as follows:

i.e. zi = Qizi-1, where:

are simplifying equations. The Qi matrix is known as the sec-
tion matrix according to i-th section. When lumped masses are 
placed on the uniform beam the shear force of beam suddenly 
changes at the position of these lumped masses. The value of 
this shear force jump (since the motion of every point of beam 
is harmonic) is directly proportional to the magnitude of lumped 
mass, the amplitude of motion and the square of frequency. 
Because of this the state vector changes at positions of lumped 

Fig. 4. Beam model with several cross-sections
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masses therefore beyond these points we have to start a new sec-
tion. The magnitude of shear force jump is expressed as:

Thus the relationship between state vector before and after 
lumped mass in matrix form is:

The Pi matrix is known as the point matrix according to 
lumped mass mi. The common designation of section and point 
matrices is transfer matrix.

Now by means of these transfer matrices the eigenfrequen-
cies of model can be determined. The state vector at the bottom 
of mast consists two unknowns since here the deflection and 
the rotation angle are zero. Thus the state vector according to 
the bottom of mast generally, using unit vectors c0 and d0 can 
be expressed as follows.

Thus the state vectors in the further connection points of sec-
tions by means of transfer matrices are:

This calculation method can be continued until the last state 
vector at the tip of mast. If we slip upwards the multiplicand 
vectors and write the result of multiplication next to the matrix 
then we get the very useful computation structure shown in  
Fig. 5. The boundary conditions are also denoted in Fig. 5.

The eigenfrequencies of the model presented above can be 
calculated by means of the following boundary conditions.

The nontrivial solution of (26) exists when the determi-
nant of coefficients vanishes. Since the actual value of these 
coefficients depend on the frequency because of the structure 
of transfer matrices, thus we have to solve the following fre-
quency equation.

The first three eigenfrequencies in case of our data set are 
shown in Table 2.

In view of calculated eigenfrequencies the unknown con-
stants of mode shape functions can be determined by the help 
of boundary and continuity conditions for deflection, rotation 
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Fig. 5. Eigenfrequency calculation scheme for cantilever beam model
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angle, bending moment, and shear force of beam. For example 
from the lower boundary conditions and first few continuity 
conditions:

The equations presented above can be summarized into the 
A(α) · xc = 0 system of equations. The unknown constants of 
mode shapes according to all sections can be calculated by the 
help of solution of this equation. The number of resulted mode 
shape depends on the applied eigenfrequency during the calcu-
lation. The first three mode shapes are shown in Fig. 6.

4 Distributed parameter model 
of single-mast stacker cranes
In our third model (see in Fig. 7.) the whole structure of sin-

gle-mast stacker crane is modeled. The distributed parameter 
model of single-mast stacker crane with applied denotations, 
investigated sections and positions of state vectors are shown 
in Fig. 7. In this model we take the lifted load into considera-
tion also in its uppermost position.

Since the frame structure of single-mast stacker crane is a 
branching structure, thus we have to pay special attention to 
continuity conditions at the connection point of bottom frame 
and mast. These continuity conditions are:

● Between sections l1 and l2 because of the whole mass of 
mast the shear force suddenly changes. Let’s denote the 
whole mass of mast by msm, thus the relation between 
shear forces at this point is expressed as:

 V1 = V´1 – msmα2Y1. This effect is taken into consideration 
by means of point matrix P1.

● Because of connecting section l4 the bending moment at 
the same point also changes. From the investigation of 
static equilibrium of this connection point the following 
expression can be determined between bending moments:

 M1 = M´1 + M3, where M´1 is the moment before connection 
point, M1 is the moment beyond connection point and M3 is 
the unknown moment at initial point of vertical section.

● Because of the whole mass of bottom frame at the initial 
point of vertical section l4 the shear force suddenly changes.
Let’s denote the whole mass of bottom frame by msb, 
thus the relation according to shear force at this point 
is expressed as: V3 = – msbα

2X3. This effect is taken into 
consideration by means of point matrix P3.

(28)

Eigenfrequencies:

α1 = 1,920 rad/s

α2 = 13,13 rad/s

α3 = 38,09 rad/s

Tab. 2. Eigenfrequencies of cantilever beam model

Fig. 6. First three mode shapes of cantilever beam model

Fig. 7. Distributed parameter model of single-mast stacker cranes
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● Because of the rigid connection point the relation between 
rotation angles here is expressed as: ϕ3 = –ϕ3.

In this case at the initial point of first section and at the 
branching point we have four unknowns. These unknowns are 
written by means of suitable unit vectors:

The calculation scheme with boundary conditions for calcu-
lating eigenfrequencies is shown in Fig. 8.

The boundary conditions from Fig. 8. and the frequency 
equation are:

The first three eigenfrequencies in case of our data set are 
shown in Table 3.

The unknown constants of mode shape functions can be 
determined by the help of boundary and continuity conditions 
in the same way than in case of our previous model. The first 
three mode shapes are shown in Fig. 9.

As can be seen in Fig. 9. unlike our previous model this 
model is free i.e. it has capability of rigid body motion. Thus 
investigation of excited vibrations can be performed in two 
ways. On the one hand we can prescribe the horizontal motion 
law of initial point of mast:

This kind of excitation is known as displacement excitation. 
On the other hand we can also prescribe the time function of 
force acting on the lowest point of mast:

(29)

(30)

(31)

(32)

(33)

Eigenfrequencies:

α1 = 2,525 rad/s

α2 = 14,84 rad/s

α3 = 40,09 rad/s

Tab. 3. Eigenfrequencies of whole stacker crane model
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Fig. 8. Eigenfrequency calculation scheme for whole stacker crane model
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This is the so called force excitation.
In both cases of excitation the unknown constants of mode 

shape functions can be determined by means of boundary and 
continuity conditions in the same way than in case of eigen-
frequency calculations. However, in the systems of equations 
for boundary and continuity conditions in both cases we have 
to replace one equation with the following formulas. In case 
of displacement excitation we have to change the equation 
according to horizontal position of mast lowest point to the fol-
lowing expression:

In case of force excitation we have to change the equation 
according to shear force of mast lowest point to the following 
expression:

Solving the resulted inhomogeneous systems of equations 
(with substitution of arbitrary ω angular frequency constants 
of mode shape functions can be calculated. calculations are 
performed with substitution r0 = 1 or F0 = 1 then the resulted 
magnitude of deflection at arbitrary point of structure equals 
to the magnitude of frequen function according to the same 
point. The Bode-diagrams of these frequency response func-
tions according to mast tip are shown in the following figures.

5 Summary
In our paper we introduced a modeling technique based on dis-

tributed modeling approach. Three models according to Euler-
Bernoulli beam theory are investigated. The first model is a can-
tilever beam model with uniform material and cross-sectional 
properties i.e. prismatic beam. The second model is cantilever 
beam model with variable cross-sectional properties and lumped 
masses. The eigenfrequencies and mode shapes of this mast-
model are determined by means transfer matrix method. In the 
third model the whole structure of single-mast stacker crane is 

modeled. Beside the eigenfrequencies and mode shapes of this 
model the Bode-diagrams of frequency response function is also 
calculated with the third model. The result of modeling presented 
in this paper can be useful to verify the accuracy of other simpler 
models e.g. multi-body models with few degrees of freedom.

(34)

(35)

Fig. 9. First three mode shapes of whole stacker crane model

Fig. 10. Bode-diagram (displacement excitation)

Fig. 11. Bode-diagram (force excitation)
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