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Abstract

The present article details the development steps and experi-

mental results obtained during the development of smart actua-

tors used on mini unmanned aerial vehicles (UAV). The research

effort is driven by the need of developing onboard health moni-

toring and diagnostics units for small size UAVs to improve their

reliability. In the present all small UAVs use single string avion-

ics systems with no built in redundancy, moreover the servo ac-

tuators onboard the airplane are often commercial off the shelf

(COTS) hobby components with no reliability figures, limited

performance guarantees and one directional communication us-

ing analog PWM signals. The development of new servo gener-

ation focused on solving the above issues. The proposed servo

actuators use the existing mechanical gearboxes and housing of

the COTS components, but their power electronics, motor con-

trol hardware and software components, sensors are custom de-

signed to fit the needs of a higher demand. The actuators with

their controlling microprocessors are capable of establishing

two way communication via CAN and FlexRay protocol, suit-

able for safety critical applications, the actuators. The develop-

ment challenges and experimental results in a hardware-in-the-

loop (HIL) simulator are discussed in the paper.
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1 Unmanned Aerial Vehicles

The emerging role of Unmanned Aerial Systems (UAS) for

both military and civil operations depends on the ability to gain

unrestricted access to national airspace [3, 8]. One of the key

issues that must be resolved to open up the skies for UAS is to

be able to coexist safely and effectively with current manned op-

erations in the national and international airspace. This includes

the ability to follow pilot commands with high fidelity even in

the case of component faults. Since current UAVs, with the ex-

ception of Predator, Global Hawk and a few other high cost sys-

tems, use single string avionics, there is no way of mitigating

flight control system component faults during flight [2]. It is our

aim to develop a redundant low-cost avionics system for UAVs

[14, 15], where hardware redundancy is combined with analyt-

ical redundancy to reduce the overall weight and cost, but take

advantage of increased computational performance onboard the

aircraft.

Fig. 1. Interconnection of the UAV avionics

The avionics system is based on the philosophy, that in most

situations a carefully selected set of built-in-tests and proper

handing over protocols between parallel channels can provide

the necessary reliability figures [13]. In case two flight control

computers are used and one fails the other will be able to clearly

identify the event of a fault in almost all situations if we assume
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Fig. 2. Futaba S3305 COTS RC servo and the custom servo with measurement and power electronics

the failed node is transmitting random messages not intention-

ally trying to attack the rest of the system. The system archi-

tecture developed in SZTAKI (Computer and Automation Re-

search Institute of the Hungarian Academy of Sciences) can be

seen in Fig.1. It consists of two independent flight control com-

puters, two INS/GPS sensor units, the three major motion axes

are controlled by pairs of independent flight control surfaces,

the aircraft has two engines with their own dedicated batteries,

two independent electrical power sources are fed to each avion-

ics component and the avionics components are interconnected

with a safety critical FlexRay communication bus [9]. The over-

all architecture, in its simplest form consists of 12 smart units,

each having its own computational capability, which allows to

transmit two directional messages between Flight Control Com-

puters (FCC) and actuators [15]. In conventional small size UAV

applications the FCC only sends analog commands to the ac-

tuators and might receive an analog feedback from a position

sensor about the current status of the unit. In our approach the

FCC sends commands over a digital channel to the actuators,

where the smart unit takes care of the internal control tasks of

servo control and Pulse Width Modulation (PWM) control of the

DC motor inside the actuator. Besides the local control tasks the

unit is also capable of providing fault detection capabilities [12],

since position, back electromotive force1 and drawn current are

all measured and using the mathematical model of the actuator

analytic parity relations can be used to identify anomalous be-

havior.

FlexRay communication protocol is selected to provide in-

terconnection between the nodes due to its low cost and the

availability of development tools [14]. A consortium including

BMW, DaimlerChrysler, Motorola, and Philips, has developed

FlexRay for powertrain and chassis control in cars. It differs

from conventional buses like CAN or LIN, since its operation

is divided between time-triggered and event- triggered activi-

ties. Published descriptions of the FlexRay protocols and im-

1Back EMF is the voltage induced by the motor, when no current is drawn

(no voltage is applied), from which RPM can also be measured at high rotation

rate.

plementation are described in [9]. In both cases, duplication of

the interconnect is optional. Each FlexRay interface (it is called

a communication controller) drives the lines to its interconnects

through separate bus guardians located with the interface. (This

means that with two buses, each node has three clocks: one for

the controller and one for each of the two guardians; this differs

from the bus configuration of TTA, an alternative time-triggered

protocol [18], where there is one clock for the controller and

both guardians share a second clock.) Like the bus configura-

tion of TTA, the guardians of FlexRay are not fully independent

of their controllers.

2 Servo Actuator

The UAV under development is based on a hobby RC air-

craft frame, which is modified for the research purpose of au-

tonomous flight and development of a vision based sense and

avoid system [11]. Since the airframe is based on a hobby air-

craft, the servo mounting positions and place for servos is based

on commercially available units. Hence, it is practical to de-

velop custom servos with the same form factor as the standard

ones available, more over the gearbox, housing and DC motor

can be re-used. On the other hand the onboard electronics of a

COTS servo is a black box for the user, hence it cannot be mod-

ified for research purposes. Moreover, they do not satisfy the

requirements of safety critical applications, they are built from a

few standard components with minimum "intelligence" in their

control logics:

• The control is done with a dedicated printed circuit board, in

this form there is no way of modifying its behavior

• Servo shaft angle (motor shaft after the reduction gears) is

measured with a potentiometer

• Induced voltage of the motor is measured

• Voltage regulation is done via a MOSFET bridge

• The reference signal is implemented with a 0−5 V level PWM

input, this corresponds to a 50 Hz frequency square wave sig-

nal with different pulse widths. Maximum displacement is
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commanded with 1 ms long high and 19 ms long low signal

value, while negative sign maximum displacement is achieved

with 2 ms long high signal level.

• The difference between maximum and minimum displace-

ment is less than 270 degrees, limited by the mechanical con-

struction of the potentiometer

• Communication with the environment is one-way, via the ana-

log PWM signal.

Due to the aforementioned limitations, COTS servos are not

applicable for safety critical UAV applications, the custom made

servo has to satisfy the following requirements:

• Independent, self-contained operation with multiple cascade

control-loops, reference tracking with sufficient bandwidth

and zero steady state error

• The control-loop parameters should be tunable, to achieve dif-

ferent desired responses

• To satisfy the model based control and fault detection require-

ments, the model parameters should be measured or identified

• All the measurable quantities should be available for diag-

nostic purposes, to provide the highest number of analytically

redundant data

• Self-testing and self-diagnostics should be implemented

• High-level, two-way communication via the FlexRay avion-

ics bus should be implemented

• The lifespan of the servo due to customization should not be

compromised

A smart actuator satisfying the performance requirements

above can serve as a smart-unit onboard the safety critical UAV.

The first task is to select a suitable servo type for modifi-

cation. The three main requirements are precision, maximum

torque and lifespan. Since only the housing, gears and the mo-

tor is used in the modified servo, these requirements pointed

towards a unit with metal gears, small backlash and with suffi-

cient space in the housing. The motor should be coreless, since

it is free from the reluctance type torque disturbances, which

makes the characteristics of the motor magnetic field nonlin-

ear around small torques, undesirable for control purposes. We

used a COTS Futaba S3305 RC servo [5] as a baseline, which is

modified during the development of the custom actuator unit as

shown in Fig. 2. This has a non-coreless motor, but the gears are

metal with minimal backlash. In a later stage of development we

will consider to replace it by a coreless one.

In the second stage of the development, the electronics mod-

ules of the unit are developed. According to the specifica-

tion, the servo should be able to communicate via the FlexRay

bus. Since this communication protocol is not widespread in

the industry, due to its maturity, only a limited set of microcon-

trollers have communication controllers built into them support-

ing the FlexRay protocol. Our choice was to use the Freescale

S12XF512 microcontroller, which has a development environ-

ment and available not only for automotive customers. This unit

is a relatively large integrated circuit, with 112 legs, which is

larger than the size of the servo housing, hence the complete

electronics is done in two separate components. The board hous-

ing the sensors, power electronics and the control electronics

is placed inside the servo unit, while the board containing the

S12XF microcontroller is outside the box, connected via a ded-

icated cable, as shown in Fig. 3. The module containing the

microcontroller is designed to be able to control not only the

servos but the large BLDC electrical engines of the aircraft via

their dedicated power electronics. The units also have a CAN

bus communication link as a backup. In case manual override is

necessary the pilot is directly controlling servos via a dedicated

CAN link between the receiver and the servos.

The electronics inside the servo contains the following com-

ponents:

• Sensor for the angle measurement of the servo shaft

• Circuit, including signal conditioning and amplification, of

the induced voltage measurement in the motor

• Circuit, including signal conditioning and amplification, of

the current measurement inside the motor

• The MOSFET bridge, controlling the motor voltages, with its

driving circuit

The magnetic sensor to measure shaft position is the Austria

Micro Systems AS5045 unit which is a system on a chip so-

lution for Hall-element sensing. The analog amplification and

digital signal processing is done on the unit, measurement are

sent via an SPI communication bus. It allows contactless angle

measurement with 12 bit resolution leading to 0.0875◦ maxi-

mum precision.

The signals sent to the microcontroller board, outside are the

digital busses of measured current, voltage, and the position of

the shaft, and the digital signals sent from the microcontroller

are the sign of motor rotation and the voltage on the motor. The

supply voltage for the motor and for the electronics are also sent

via this cable. The control, fault diagnostics and communica-

tion algorithms are implemented on the microcontroller, which

has access to all internal and the necessary external signals. The

circuit board is connected to the redundant electrical network

onboard the aircraft, via a power switch, which is selecting al-

ways the healthier electrical bus with seamless transition.

It is worth to note, that each unit is also equipped with a CAN

communication network, which serves as a direct backup com-

munication link, in case manual flight is required by the safety

pilot. In this case the RC receiver signals are captured from the

receiver with a PIC24F microcontroller and sent directly to the
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Fig. 3. Modified servo with the external S12XF microcontroller.

servos, bypassing the FCC and the FlexRay communication net-

work.

3 Implementation

The main goal of the custom servo development is precise

position control. To close the position loop in the controller an

additional inner angular rate loop based on back EMF measure-

ment is necessary. It is interesting to note, that this signal can

be measured only when there is no voltage applied to the mo-

tor (at zero PWM level), after the transients. A dedicated logic

is determining the required PWM signal and based on the ro-

tation speed the sequence of polarities applied to the motor to

maintain the desired rotation direction, since only rate but not

the direction is determined by the PWM signal.

The logic behind the control is the following: position control

is done with 250 Hz, with position measurement of 250 Hz. The

frequency of the PWM signal is 1 kHz, back EMF is measured

with this frequency and speed control is also done with 1 kHz. It

is also important to note, that back EMF is always measured in

the middle of the low PWM level, to reduce the transient effects.

The control is done via two cascade loops [19], where the

inner loop is realized as a PI controller and the outer loop as a P

controller. The inner loop is responsible for angular rate while

the outer loop for angle reference tracking as shown in Fig. 4

(saturation of angular rate and PWM increments are included in

the controller blocks). As a first step, the model of the actuator is

identified, using subspace based identification methods. PWM

steps are used as input signals, while back EMF and shaft angle

measurements are used as outputs. The identified model has

one dominant and four minor modes, hence a simple first order

model is selected for control design purposes:

Gnom =
2.836

s + 7.586
,

where the input of the model is PWM increment, which has val-

ues between ±1750, while the output is angular rate of the output

shaft in ◦/sec. The identification is done around 0 ◦/sec angular

rate, but it is important to note that a maximum angular rate

of 420 ◦/sec is achievable with the design and at higher angu-

lar rates the system becomes strongly nonlinear. The inner loop

controller has the form:

Ci = Ai

1 + sTI

sTI

.

The integrator gain TI is selected to have a pole zero cancel-

lation at TI = 1/7.586 and the steady state gain is selected to

avoid saturation (Ai = 10). In principle the open-loop is now an

integrator. The closed loop is augmented with an integrator to

provide angle response:

Gi,cl =
28.36

s(s + 28.36)
.

This model has angular rate reference input in ◦/sec and angle as

output in ◦. Theoretically the outer controller is a PD controller

with a zero cancelling the pole of Gi,cl, but omitting the deriva-

tive term gives better results. This effect may be accounted to

the nonlinearities present at higher angular rates. The static gain

is chosen to avoid saturation (Ao = 2).

Careful measurement of the back EMF signal is essential

which is proportional to the angular rate in a wide range. Mea-

surement is implemented with the use of the PWM counter in-

terrupt which is triggered when the counter reaches zero. This

ensures that the applied voltage is zero on the motor and the

measurement takes place in the middle of the stage after the

transients faded out. The measurements are still corrupted with

noise, hence a low pass filter with 40 Hz corner frequency is

used to smooth the signal. It is also important to note, that the

output of the controller is PWM signal, and the maximum al-

lowed PWM command has to be limited to allow enough time

for back EMF measurement. After several iterations, the max-

imum PWM level is limited to 68%, with this the EMF mea-

surement is not compromised. Since the system dynamics have

lower gain in higher angular rate range, this does not limit the

performance of the servo, but an input limit of 420 ◦/sec, cor-

responding to the maximum PWM level have to be imposed on

the reference commands. The inner loop controller has one ad-

ditional feature, in case a constant disturbance is acting on the

surface the integral of the error grows fast, which leads to large

transients after the disturbance is gone. To handle this prob-

lem a proper anti-windup strategy is necessary to limit the tran-

sients. The difference between the maximum PWM level and

the output of the controller multiplied by the anti-windup gain

(Aaw = 1/150) is subtracted from the input of the integrator in

case the maximum level is exceeded.

The outer, angle tracking loop is done with 250 Hz update

rate. Angle tracking with large deflections is handled well, but

due to the backlash in the gearbox and the high mechanical fric-

tion, precise positioning is challenging. With a simple P control

structure the servo output is oscillating around the reference an-

gle with approximately 10 Hz frequency with 5◦ amplitude due

to the friction of the gears inside the housing. To better han-

dle the situation an empirical extension is made to increase the

controller gain at smaller errors. If the error is smaller than 50

PWM increments the controller gain is increased linearly, reach-

ing 3Ao when the error reaches zero. This eliminates the prob-

lems related to friction and backlash.

Considering the assembly of the magnetic rotary encoder, due
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Fig. 4. PID control loop implementation of the actuator servo

to the shift of the shafts a periodic offset error obtains at angle

measurement. This cyclic error is induced by the difference of

the unwrapped, and detrended shaft angle and its fitted poly-

nom (shown in Fig. 5). After a sufficient number of measure-

ments, within the confidence interval of the periodic errors, the

most likely offset values - for a complete turn - are obtained by

averaging. Finally quantization is needed, to get sensor incre-

ment dimension for the software implementation. After com-

pensation, the control characteristics are only slightly affected,

however the absolute position measurement is improved up to a

significant value of 2◦.

Fig. 5. Magnetic rotary encoder compensation

4 Test results

The behaviour of the servo is compared with an off the shelf

servo unit (Futaba SG5010) as shown in Fig. 7. The response

for a step command of 30◦ is compared, where the advantage

of the custom made servo is clearly visible. The measurement

from the factory servo is corrupted by noise, but it is evident that

the settling time and the overshoot are both larger in this case,

moreover the factory servo has higher steady state error.

The ultimate goal of the research is to use the actuator on-

board the development UAV [1], but before flight testing, the

unit has to prove its performance and reliability. A hardware-in-

the-loop test environment is used to test the FCC and the imple-

mented control system (shown in Fig. 6). In its original form

the PWM signals generated by the main FCC are sent back to

the aircraft simulation via a PWM capture card and the actuator

dynamics are omitted from the simulation. However, with the

current simulation set-up the real actual position of the actua-

tors, along with other measurements useful for health monitor-

ing, are sent back to drive the aircraft dynamics providing a more

realistic simulation. The actuators are connected to the FCC via

the FlexRay network and the measurements are sent back to the

simulation via a serial link, so the PWM capture card is removed

from the set-up.

Fig. 6. Hardware-in-the-loop setup for UAV development

Actuator deflections are shown in Fig. 9. It can be seen

that the reference signal is tracked well and the steady error is

smaller than 0.4◦, which is acceptable for flight control.

The servos were tested for 30 hours in continuous waypoint

navigation flight, in the first 10 hours with no load, in the second

10 hours with loads corresponding to the aerodynamic forces

expected during operation, and then another 10 hours with no

load. The tests were accomplished with no software or hard-
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ware faults. The temperature of the servos stabilize at 45 Cel-

sius, within 10 minutes after warmup, and the power consump-

tion was also fairly constant in the first 10 hours. It increased

after applying the load, and unexpectedly did not go back to the

original level after removing the load, which might be caused by

the wear and tear during the testing.

Fig. 7. Comparison of Futaba SG5010 and custom servo

The servo is proven to be reliable enough for flight tests and

one of the units is installed to the development UAV. The servo

receives the same reference signal as the one corresponding to

the rudder control surface, but it lacks physical connection with

any of the control surfaces. Deflection is shown in Fig. 8 during

a manual flight test.

5 Conclusion

The present article discusses the development of a smart actu-

ator used on a small scale UAV. The newly developed servo unit

builds heavily on the mechanical components of a COTS RC

servo unit, but its electronics an software are custom designed

for the purpose of a fault-tolerant safety critical avionics sys-

tem. The reasons behind design decisions are discussed and the

development steps are detailed in the article, followed by ex-

perimental results done on a hardware-in-the-loop test facility.

The future steps should include the characterization of dominant

fault modes of the actuator, along with determining the reliabil-

ity figures of the units including mean time between failures and

evaluation of the performance of the onboard health monitoring

unit (true detection rate, missed detection rate, false alarms).
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