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Abstract

Martensitic high strength steel type of 22MnB5 is increasingly

used in transport industries for safety components. Al-Si based

coating layer is applied to the steel surface to prevent oxidation

during hot stamping process. The main objective of performed

analyses is to study the differences in formation of the surface

AlSi layer related to weldability of martensitic steels. The struc-

ture of sub-layers and changes of their chemical composition

were studied as a result of different thermal conditions during

heat treatment. Formation of silicon-enriched zones in connec-

tion with overheating during austenitization is discussed. Ten-

dency for creation of brittle inter-metallic phases based on Al-Fe

was revealed.
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1 Introduction

Hot stamping is a widely used method of preparation of high-

strength steel for passive safety components. The material is

formed in a thermo-mechanical process during anizothermal

cooling from the austenitization temperature into the specified

shape and reaches a fully martensitic structure with strength

higher than 1500 MPa (Liu [1]; Heping [2]). The process en-

ables production of stampings with reduced springback, with a

great geometric accuracy and a high strength-to-mass ratio. The

sections produced in this way are used in crash protection ap-

plications. Current research in this field is oriented around heat

treatment with controlled cooling. Reaching an optimal com-

bination of martensite and residual austenite leads to a desired

increase of fracture toughness and energy absorption capability

at high loading speeds (Bardelcik [3]; Dancette [4]).

Usage of precoated steels in hot stamping is one of the meth-

ods that improve the quality of high-strength stampings. The

role of the coating is protection of the surface against iron scale

and decarbonisation during hot forming and quenching in the

die. A 30 − 40 µm layer based on Al-Si (90% Al) is preferred

for martensitic low-alloyed steels. The benefit of a coating based

on Al-Si is higher oxidation resistance at high temperature Kar-

basian [5]).

The structural changes in the surface layer produced by the

thermal process reduce re-melting during welding, contributing

to the preservation of the passivation effect. In addition, experi-

ments have demonstrated a tendency to create a protective layer

on the electrodes which increases their durability (Maggi [6]).

At the same time, however, a tendency to melt into the weld

metal has been observed, for example in laser-welded joints.

A possible consequence is the creation of brittle inter-metallic

phases based on Al-Fe and reduction of joint strength (Ehling

[7]). Recent studies suggest a greater risk of this degrading pro-

cess in “an overlap welded joint than in a butt welded one” (Choi

[8]; Kim [9]). During laser welding of hot forming steel with

an Al-Si coating, the coating is diluted into the weld zone, which

results in Fe-Al intermetallic phase formation (Ehling [7]). The

brittleness of the Fe-Al intermetallic phase weakens the strength

of the weld joint. Even some of recent study suggest to remove
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the intermetallic coating for the reason of weldabilty (Fan [10]).

The reason is presence of Al2O3 and surface oxides after coating

cracking due to high temperature plastic deformation.

The presented study focuses on an analysis of the surface

layer of low-alloy martensitic steel and detection of potential

negative impacts of the surface layer on weldability. It specifies

material parameters that present a source of dispersion of static

and dynamic strength of joints within a standard manufacturing

process of high-strength components of the bodies.

2 Experimental material, methodology of analyses

The experiments concerned various meltages of martensitic

steels 22MnB5 after hot stamping. We analysed a set of six

stampings of different shapes in which instable welding process

occurred. The typical chemical composition of the welded ma-

terials is given in Table 1. The study of the material’s metal-

lurgical weldability was based on an analysis of internal homo-

geneity and micro-cleanness of the material. The evaluated ef-

fect of the surface layer on the weldability was based on the (i)

analysis of the chemical composition of individual sub-layers in

crosswise scratch patterns; (ii) evaluation of differences in mor-

phology and chemical composition directly on the surface layer

of the stampings.

Samples for the structural analyses were taken from flat areas

specified for point-welded joints, because the shape differences

of the tested stampings can cause uneven cooling speeds during

stamping (Fig. 1). The scratch patterns were produced by stan-

dard methods, etched with a 3% Nital solution. The structural

analyses were performed by light and electron microscopy (SE),

the chemical composition was analysed by an energy microanal-

ysis method (EDX analysis).

Tab. 1. Chemical composition of stampings [wt.%]

C Mn Si Cr Altotal Ti B

0.25 1.25 0.25 0.19 0.043 0.04 0.0035

Regarding the chemical composition, the entire tested series

of stampings satisfied normative requirements for the 22MnB5

steel. Samples for the structural analysis and for the surface lay-

ers evaluation were taken from the same positions. All the eval-

uated stampings showed a martensitic structure with an approx-

imately identical share of bainite and partially tempered marten-

site.

3 Analyses of surface layers

An example of a typical composition of the surface layer

is presented in Fig. 1, 2. The thickness of metallographically

distinguishable sub-layers was measured on etched crosswise

scratch patterns (positions 1 to 4 in Fig. 2). For each stamping,

three samples from a specified flat area of the stamping were

evaluated. The compared result for each sample represents an

average value from at least three measurements in various posi-

tions on samples. The length of scratch patterns was 20 mm.

A difference of the diffuse - inter-metallic layer thickness was

detected (in the measured parameter No. 2 in Fig. 2). In two

stamping shapes, the thickness of the diffuse inter-layer was

over 13 µm, i.e. about double (or twice) compared with the

other stampings with a thickness of the inter-metallic layer of

6 − 9 µm. In addition, a different structure of heterogeneities in

the volume of the coating was observed in these stampings. Un-

like the remaining set of stampings with typically scattered iso-

lated volumes of these heterogeneities, in stampings with higher

intermetallic layer, another continuous “inter-layer” was formed

in the volume of the coating (see Fig. 3 (a) in comparison with

Fig. 2). The analyses of local differences in the chemical com-

position focused on these areas.

Fig. 1. Test stamping No.1

Fig. 2. Typical structure of surface layer

The chemical composition of the sub-layers was evaluated

on scratch patterns. The positions of individual measurements

correspond to measurements of the sub-layer thicknesses and is

presented in Fig. 2: (1a) immediate surface layer; (2) diffusion

layer bordering martensitic steel; (3) border between the diffu-

sion layer and the remaining volume of the coating; (4) hetero-

geneities in the coating beyond the area of the diffusion layer;

(5) homogenous area of the coating beyond the diffusion layer;

(6) surroundings of hollows in the diffusion layer.

Changes in concentration of essential elements (Al-Fe-Si) in

the sub-layers of the coating in a line perpendicular to the sur-

face of stamping No.2 are presented in Fig. 3. Proportions of
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Si-Fe-Mn elements in individual sub-layers were evaluated in

succession to the detected geometric differences in the structure

of the coating in the tested series of the stampings. Differences

of Al/Si in the individual sub-layers are considered particularly

important as regards the evaluated effect on the weldability. The

results showed a twofold increase of Al/Si proportion in the ba-

sic volume of the layer, for example in stampings No.2 com-

pared to No.1, i.e. the stampings where the deviation in the

internal structure of the surface layer was detected. The non-

compactness of the immediate surface layer (the 1a area in the

mentioned measurement) did not allow a definite evaluation of

the chemical composition in the crosswise scratch patterns. For

this reason, the measurement was supplemented with a direct

measurement from the surface. The measurement showed again

an increase of the Al/Si proportion in stampings with identified

deviation in the thickness of the inter-metallic layer.

(a) Measured along the arrow as a ratio of each elements

(b)

Fig. 3. Different structure of surface layer after intensive Al-Si-Fe redistri-

bution

The results of the monitored relations are given in Fig. 4.

Twofold increase of the proportion of Al/Si on the surface and

in the volume of the coating (layer 5) occurs together with sta-

bile proportion of Al/Si in layers bordering the basic material

(layers 2, 3). This redistribution was thus produced by an in-

crease of an inter-metallic layer and, at a certain stage, by the

formation of a new inter-layer in the volume of the coat with

an approximately identical Fe/Al/Si proportion. The increased

Al/Si proportion on the surface of the stampings coincides with

the measured parallel decrease of Al in the formed secondary

inter-layer. According to the measurement, the increased thick-

ness of the inter-metallic layer was accompanied with increased

Fe concentration in the secondary inter-layer.

Fig. 4. Change of the Al/Si proportion [%] in relation with the thickness of

the inter-metallic border of the coating

The mutual interconnection of the detected deviations in the

internal composition and the Al/Si proportion manifest the dis-

persion of the performed heat treatment, particularly the differ-

ences in temperatures and the heating period during austenitiza-

tion. This fact leads to differences in intensity of the diffusing

processes that lead to the observed differences in the internal

structure of the layers. The source of the undesired dispersion

of weldability particularly comes from a tendency to form a sec-

ondary inter-layer with an increased Fe and Si content (zone II in

Fig. 3). The measurement results suggest that these secondary

layers are formed in combination with a thickness of an inter-

metallic layer exceeding ca 13 µm.

The marked border in Fig. 4 corresponds to the detected limit

thickness of the inter-metallic layer. Exceeding this limit leads

to creation of another “secondary” layer enriched with Fe, thus

an undesired effect on the weldability. A layer of oxide on the

surface of the stampings increases with the growing heating pe-

riod of austenitization. The changes of thickness in the layer

of oxide on the surface of the stampings produce different sur-

face colouring caused by interference. Stamped sections with

detected diffusion redistribution of the monitored elements in

the formation stage of a new “secondary” layer enriched with

Si and Fe showed a certain distinction in the surface colouring

within the tested series of stampings (difference in the blue-grey

colouring intensity). The undesirable changes of the internal

structure of surface layer can thus be indicated by a change of

surface colouring.
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4 Experimental welding

An experimental series of 25 spot welding joints was pro-

duced to evaluate the effect of the detected diffusion processes

on the weldability. The experiment was based on a compara-

tive evaluation of static strength and fracture behaviour of the

welded joints, combining materials with extremes of the de-

tected differences in the structure of surface layer. The selec-

tion of the welding parameters was based on a preceding op-

timisation of the technological welding process. The detected

difference of static strength was 22 kN (in joints combining ma-

terials with a minimum thickness of the inter-metallic layer) vs.

17.6 kN (in joints of materials with the maximum thickness of

the inter-metallic layer). This difference was connected with

a differing position and curve of the fractures.

The curve of the fracture decisively affected the strength of

the resistance spot-welds. Higher strength was achieved in a sit-

uation where the fracture was initiated in a zone of tempered

martensite. Lower strength was connected with initiation of the

fracture on the fusion line. The welding thermal cycle in this

particular type of martensitic steel causes a local softening. The

position and extent of this critical zone decisively affects the

fracture behaviour and strength of the spot welds. The detected

differences in the structure of surface layer affect the current

flow during the spot welding. With a view to the stable char-

acteristics of the remaining parameters in the tested series (the

chemical composition, the micro-structure, micro-cleanliness,

etc.), it is possible to connect the differences in the reach and

intensity of the thermal impact during welding with the detected

deviations of the coating.

4.1 Evaluation of the samples based on the scope of ther-

mal effects

Current flow during spot welding is influenced by surface

layer condition. Influence of diffusion processes in surface layer

was evaluated by analysis of heat affected zone.

To assess the influence on the range of thermal effects there

was evaluated:

1) the distance of the fusion zone

2) the distance of the softening zone

Representative samples for experimental welding were pre-

pared from materials in the same state of the surface layer. After

the static test, the scratch pattern was created and subsequently

also the microhardness was created for determination of the heat

affected zone (see Fig. 5).

The comparison showed that the differences in the diffusion

zone did not produce measurable differences in regard of the po-

sitions of those layers. A comparison of the intensity of thermal

effect on the material showed no difference in level of micro-

hardness, but a measurable effect on the wide of tempered zone

was observed. There was also found a tendency of precipita-

tion of carbides along austenite grain boundaries. But in the

reviewed cases, this trend did not lead to any negative effect on

fracture behavior. Only ductile fracture mechanisms was ob-

served, no intergranular fracture.

Fig. 5. Microhardness of compared sample (1-material with higher inter-

metallic layer, 2- material with lower intermetallic layer)

4.2 Creation of brittle inter-metallic phases

The quality of spot welding of the safety auto body parts can

be decisively influenced by nonhomogeneous fusion zone. Spe-

cific heterogeneity was observed in some samples of operational

weldments inside the weld metal. Energy microanalysis was

conducted to investigate the chemical composition of the inter-

metallic layer in Fig. 6. Creation of brittle inter-metallic phases

based on Al-Fe as a consequence of welding process was found

out. Aluminum and silicon had melted in the Al-Si layer and

were diluted into the weld metal during the cooling stage of

welding. Both of these elements are soluble in iron and were

homogenously distributed inside the solid solution but partially

precipitated as an intermetallic phase along the fusion line.

Fracture behavior at different microstructural state of spot

welds was analysed. A tendency to the brittle fracture mode

instead of a ductile fracture was observed as a consequence of

inter-metallic phase along fusion line (Fig. 7). Crucial effect

mainly on the dynamic strength can be presumed (Paščenko

[11]).

5 Conclusion

The presented results led to detection of basic tendencies in

the formation of the internal structure of the surface layer in

connection with deviations of the introduced heat treatment of

martensitic steel 22MnB5. Coating by AlSi is applied during the

heating phase (to the temperature range of 880−950◦C for times

of 5-10 min). The applied heat treatment leads to modification

of the surface layer and at the same time diffusion of iron into

the surface layer and surface oxidation of the layer.

The heat treatment creates a layered sub-structure with un-

even distribution of Al-Si-Fe. The performed analyses docu-

ment diffusion redistribution of Al-Si-Fe elements in the surface

layer in connection with changes in the geometry of the inter-

nal structure of the layer. Increase of the temperature and the

heating period leads to an increase of the thickness of diffusion

layer and diffusion of Fe into the AlSi coating. Together with

the rising Fe/Si, Fe/Al proportion, the volume of heterogeneities
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Fig. 6. Inter-metallic phase along the fusion line

Fig. 7. Defective fracture mode due to the Al-Si phase along the fusion line

enriched with iron increases and the share of Al/Si rises in the

immediate surface zone. Forming of a continuous “secondary”

inter-metallic inter-layer in the volume of the coating with pre-

vailing Al is particularly important for its impact on weldability.

The share of Fe/Si, Fe/Al elements, i.e. the intensity of the im-

pact on the current flow during welding, rises with the austeniti-

zation period in this secondary layer.

At the same time, the Al/Si proportion on the surface of the

stampings rises, the surface oxidation becomes more intensive

and porosity of the immediate surface layer increases. The rise

of porosity and the content of oxides on the surface contribute

to the instability of the welding process. A higher amount of

pores leads to their random collapse, thus changing the current

flow. The higher layer of oxides on the surface of the stampings

affects the current flow.

The study of the crucial tendencies in diffusion re-distribution

of the Al-Fe-Si components in connection with formation of un-

desirable “inter-layers” was based on an evaluation of local con-

centrations of these elements in relation to the thickness of the

inter-metallic layer. Based on the performed experiments, the

maximum limit thickness of the inter-metallic layer has been

specified as 13 µm as the limit stage of these changes with a

view to the researched impact on the spot welds’ quality. Higher

value by dispersion of the austenitization period causes instabil-

ity of the welding process in the random combinations of the

weldments.

The experimental evaluation of the weldability revealed the

differences in softened zone. The formation of wider zone of

tempered martensite was accompanied by the intergranular car-

bide precipitation. Regarding the fracture behaviour, the harm-

ful effect on the fracture toughness can be estimated mainly in

the case of more intensive precipitation. Formation of Al-Si

inter-metallic phase along the fusion line was observed as the

most harmful effect on the fracture behaviour.
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