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Abstract

The article is devoted to the influence of carrying capacity on

the stability of laterally loaded cylindrical shells. The influence

of initial imperfections on the stability of the laterally loaded

shell is also taken into consideration. The investigated structure

is a simplified variant of the case of cylindrical shell (road tank

– for example Paščenko [5]; Paščenko, Stejskal [6]) located on

two saddle supports. The initial shape imperfections are created

by pushing the saddle support into the shell. The new deformed

shape is used as an imperfect shell in the following nonlinear

analysis of stability. The main objective of the analysis is to find

the reduction factor α depending on the change of geometric

parameters of the numerical model (embracing angle 2θ, wall

thickness t). The shell deformation around the saddle support

is also monitored. Numerical analysis is carried out by means

of a computer program COSMOS/M based on the finite element

method (FEM).
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1 Introduction

This article is focused on a research concerning the loss of

stability of road tanks located on two saddle supports.

A simplified version in the form of a horizontal cylindrical

shell transversally loaded by a firmly joined rigid punch (sad-

dle support) is investigated (Voltr, Paščenko [8]). The effect of

initial imperfections on stability of the shell is namely exam-

ined. In the first step of research, stability analysis is performed

only in the elastic area. The models with frequently used vari-

ants of embracing angle 2θ = 60, 90, 120◦ and range of ratio

R/t ∈ 〈70; 250〉 are used. The R/t is ratio of radius of shell R to

the thickness of the shell t. The analysis monitors the change of

the reduction factor α in response to changes of the shell thick-

ness t. Moreover, attention is paid to the nature of deformation

of the cylindrical shell during loading.

Additional bending load is introduced into the shell through

initial shape imperfections (Volmir [7]). It usually results in a

decrease of carrying capacity (Wunderlich, Albertin [9]; Wun-

derlich, Deml [10]). However, sometime this effect is quite op-

posite and carrying capacity of imperfect shell grows. In this

case the imperfection can have a reinforcing effect. Within this

research, the imperfection is created by means of the auxiliary

linear analysis when the support is pushed into the shell of a pre-

cisely defined value 2 mm. Thus, the deformed model is then

used as a starting model for the following nonlinear analysis.

2 Computational Model

The thin-walled cylindrical shell with a length L = 300 mm,

diameter D = 150 mm and wall thickness t (thickness varies in

the range 0.3 ÷ 1.1 mm in increments of 0.1 mm) is adopted for

the numerical model (Voltr, Paščenko [8]) (see Fig. 1). The shell

is provided at both ends with flat circular covers with a thickness

t1 = 30 mm. This thickness ensures sufficient rigidity of the

covers preventing their excessive deformation which could have

a negative effect on analyzed results. In the middle span of the

shell (L1), the stiff punch in the shape of a saddle support with a

width b = 20 mm and embracing angle 60◦, 90◦, 120◦ is firmly

connected to the cylindrical shell.

The computational model is simply supported in two bound-
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ary element nodes A, B and further, the saddle support is pre-

vented from lateral displacements and tilting (see Fig. 1). Dur-

ing the loss of stability, the shell may thus exhibit both symmet-

rical and nonsymmetrical deformation in regards to the vertical

plane passing through the axis of the cylindrical shell. The com-

putational model is loaded through the saddle support with a

vertical force F.

Fig. 1. Geometric parameters of the computational model

The material of all parts of the model (shell, covers, saddle

support) has the same mechanical properties, particularly Young

modulus of elasticity E = 1.9 × 105 MPa and Poisson’s ratio

µ = 0.3.

Fig. 2. Initial undeformed model (2θ = 120◦)

3 Result of Evaluation of Numerical Analyses

As mentioned before, thickness of the shell t varies in the

range 0.3 ÷ 1.1 mm (in increments of 0.1 mm). That means

that depending on varying thickness t were performed 9 numer-

ical analyses of the perfect shell (without initial imperfection –

GNA) and 9 analyses of the imperfect shell (with initial imper-

fection – GNIA). All of that for each embracing angle 2θ = 60◦,

90◦, 120◦. So that means overall 54 nonlinear numerical analy-

ses were performed.

Reduction factor α is calculated from results of these individ-

ual analyses. It represents the influence of initial imperfections

on stability of examined shell. Reduction factor is gained as a ra-

tio of results of nonlinear numerical analyses of imperfect shell

(with initial imperfection) to the perfect shell (without initial im-

perfection). Both types of analyses are in the elastic area. These

ratios can be seen in Fig. 5, Fig. 8 and Fig. 11 as individual dots

of curves of reduction factor α120◦ , α90◦ , α60◦ .

The numerical results carried out in this configuration of

boundary conditions show that the lateral deformations of the

cylindrical shell may be considered for the first natural mode.

The shell has a tendency to lay on one edge of the saddle. The

second natural mode is then symmetric push of the saddle sup-

port into the cylindrical shell. Certain combination of both nat-

ural shapes appeared during many analyses. Initially, the sym-

metrical push of the saddle support into the shell takes place.

It corresponds to the linear part of the load curve. Then the

lateral displacements appear with a subsequent loss of stability

of the cylindrical shell. This corresponds to a nonlinear part

of the load curve. Course of the lateral deformation is charac-

terized by redistributing originally symmetrically spaced waves

into the shape with a significant buckle and valley around the

corner of the saddle on the incline side. Other deformation is

almost smoothed (see Fig. 7). Previous text concerned the be-

havior of the perfect ideal shells without initial imperfections.

Deformation of imperfect shells during loss of stability is in-

fluenced by intentionally established initial imperfections. The

general nature of loss of stability is similar to the previous case

however in addition, some local deformations of various depths

and shapes appear in vicinity of the saddle support. For greater

shell thickness, these deformations often disappear with increas-

ing load. Sometimes, local valleys of nearly circular shape ap-

pear there.

Note: The deformation scale of the following computational

models is enlarged for better visibility and understanding of the

process of loss of stability.

Note: Presented examples of deformed shells (of various em-

bracing angles) were chosen according to general patterns which

were observed on the whole scope of the analyses. Therefore

was more important to show two deformed imperfect shells

of embracing angle 120◦ (two different natural modes, Fig. 6,

Fig. 7) rather than show one perfect and one imperfect shell as

for embracing angles 90◦ a 60◦ (Fig. 9, Fig. 10, Fig. 12, Fig. 13).

3.1 Carrying capacity – geometrically nonlinear analysis

GNA

One remarkable nonlinear analysis of shell without initial im-

perfection (ECCS [2]; Eurocode 3 [3]) is for example shown

in the following text. The analysis takes into the consideration

only geometrical nonlinearity (large displacements) with mate-

rial behavior in elastic range (Bushnell [1]; Zienkiewicz [11]).

Fig. 3 shows the load (equilibrium) curve for model t = 0.5

and 2θ = 120◦. Six gradual losses of stability occur during the

loading of the shell. Each loss of stability causes decrease of

carrying capacity and is accompanied by redistribution of de-

formation into new shape. This means that the shell gradually

goes through various equilibrium states. The shell resists the

acting load and the waves and buckles are redistributed during

the whole loading.
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Fig. 3. Example of load (equilibrium) curve

At first, a symmetrical deformation is clearly visible in the

saddle area. Then the starting lateral displacements appear with

a subsequent first loss of stability (Uy ≈ 1 mm, see Fig. 3). Lat-

eral displacement of the shell continues till the second loss of

stability happens (Uy ≈ 2 mm). The shell lays on one edge of

the saddle on the incline side. The third loss of stability occurs

again at displacement Uy ≈ 2 mm and significant circle valley

appears in the saddle area. Last three losses of stability occur at

range of displacements Uy ≈ 3-4 mm. These are accompanied

by several circle valleys on the sides of the shell. The valleys are

visible in Fig. 4. The final deformed model at the end of loading

is also shown in Fig. 4.

Fig. 4. Deformed perfect model at the end of loading, t = 0.5 mm,

2θ = 120◦

The following text is devoted to the results of the computa-

tional analysis of the stability of cylindrical shells on the saddle

support for different embracing angles.

3.2 Embracing angle 120◦

The graph in Fig.5 shows that the first part of the curve of

reduction factor α120◦ decreases with increasing parameter R/t.

Resistance to loss of stability of the structure decreases due to

higher sensitivity to initial imperfections. This trend is expected

and the curve is approximately equidistant to the curves of re-

duction factors αx specified in the European recommendations

ECCS [2]. There are three fabrication tolerance quality classes:

class A (excellent quality), class B (high quality) and class C

(normal quality). Class B is considered for normal production.

Last two points of the curve α120◦ , corresponding to the wall

thickness 0.3 and 0.4 mm (R/t = 250, respectively 187.5), show

certain differences. Slight reinforcement of the structure fol-

lowed by growth of the observed curves can be at this moment

explained by the proximity of the first and the second natural

modes (see Fig. 6 and Fig. 7). The shell is forced, due to the sig-

nificant initial imperfections, to lose its stability in the second

mode corresponding to higher stability resistance.

Fig. 5. The dependence of the reduction factor α on the parameter R/t,

2θ = 120◦

Fig. 6. Typical first natural mode – deformed imperfect model at the begin-

ning (left) and the end of loading (right), t = 1.1 mm, 2θ = 120◦

Fig. 7. Typical second natural mode – deformed imperfect model at the be-

ginning (left) and the end of loading (right), t = 0.4 mm, 2θ = 120◦
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3.3 Embracing angle 90◦

Comparing this case to the previous one (2θ = 120◦), the im-

perfect models of embracing angle of 90◦ show that the curves

of reduction factor α90◦ are significantly different from the ex-

pected curves in three cases. At the beginning of the curve, for

t = 1.1 mm and R/t = 68.2, the coefficient α90◦ lies significantly

above the value α = 1.0 (see Fig. 8).

Fig. 8. The dependence of the reduction factor α on the parameter R/t,

2θ = 90◦

This is caused by used initial imperfections which result in

the formation of other local additional buckles reinforcing the

shell. When the increased limit load is achieved then a sudden

drop in load due to loss of stability occurs. It is accompanied

by a redistribution of the buckles. The shell can thus gradually

go through various equilibrium states. Even though the course

of deformation of the perfect and imperfect models is quite dif-

ferent, the final shape of the deformation is very similar (lateral

displacements, see Fig. 9 and Fig. 10).

Fig. 9. Deformed perfect model at the beginning (left) and the end of loading

(right), t = 0.6 mm, 2θ = 90◦

3.4 Embracing angle 60◦

A typical feature of this embracing angle is a combination of

symmetric and asymmetric deformation. From the beginning,

the saddle support is pushed into the cylindrical shell symmet-

rically. This is followed by lateral deformation and pushing the

Fig. 10. Deformed imperfect model at the beginning (left) and the end of

loading (right), t = 0.6 mm, 2θ = 90◦

shell on one edge of the saddle support. Reduced carrying ca-

pacity (in terms of limit load) is caused by a small embracing

angle – saddle support is narrow and therefore sensitive to early

buckling and snap-through into the shell. However, the saddle

support with small embracing angle in combination with the ini-

tial imperfections results in a significant reinforcement of the

structure practically within the entire considered span of param-

eter R/t (see Fig. 11). Reduction factor is significantly higher

than would be expected from the models with embracing angles

of 90◦ and 120◦.

Fig. 11. The dependence of the reduction factor α on the parameter R/t,

2θ = 60◦

The individual analyses show that the introduced initial im-

perfections can induce, during the initial phase of loading, small

buckles located close to the saddle support. They may act as

additional imperfections and may cause increasing of the limit

force required to overcome them. The final shape of defor-

mation of the perfect and imperfect structure is again similar

(see Fig. 12 and Fig. 13).

4 Conclusion

The article was devoted to the theoretical description of car-

rying capacity of horizontal cylindrical shell on saddle supports.

The computational models with embracing angles 60◦ , 90◦ and
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Fig. 12. Deformed perfect model at the beginning (left) and the end of load-

ing (right), t = 1.0 mm, 2θ = 60◦

Fig. 13. Deformed imperfect model at the beginning (left) and the end of

loading (right), t = 1.0 mm, 2θ = 60◦

120◦ were examined. Based on the evaluation of the first series

of numerical analyses, it appears that the effect of initial shape

imperfections on the loss of stability of laterally loaded cylin-

drical shells changes with the embracing angle 2θ. The initial

imperfections of the models with the largest angle 2θ = 120◦

led to a reduction of carrying capacity. Although carrying ca-

pacity of imperfect models with an embracing angle of 90◦ was

also mostly reduced, about one third of shells performed a slight

reinforcing effect. Models with the embracing angle 2θ = 60◦

performed a reinforcement of the shell in almost all observed

cases.

The results also show that the vast majority of examined cases

lose stability at the first natural mode. This means that the cylin-

drical part of the model deviates from the vertical direction. The

shell has a tendency to lay on one edge of the saddle. This is

true regardless of the embracing angle and it is also a very im-

portant finding for the planned experimental verification. For

example, Fig. 3 shows the load (equilibrium) curve where six

gradual losses of stability occur during the loading of the shell.

Each loss of stability causes decrease of carrying capacity and

is accompanied by redistribution of deformation into new shape.

However, the results of the analyses in the elastic area are not

comparable to the experiments. The real experimental models

lose stability in the elastic-plastic area. This is the aim of fol-

lowing research, which will include the influence of plasticity

according to ECCS [2], by using χ (buckling resistance reduc-

tion factor for elastic-plastic effects).

Finally, it may be noted that the minimum value of the

achieved reduction factor αmin is approximately twice the value

of the reduction factor αx (for class B) provided by the ECCS [2]

for axially compressed cylindrical shell. This conclusion is valid

for all the embracing angles. Particular cases of these minimum

values of reduction factor αmin are shown in Fig. 5, Fig. 8 and

Fig. 11.
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