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Abstract
In this paper planar-frame structure with general load is intro-

duced. These structures can be supported one or more symmetry 
planes. In automotive industry the symmetry gives opportunity 
for reduction during vehicle design process. The planar struc-
tures with planar and perpendicular load are examined with σ 
and Σ point methods. Furthermore coefficients of the compatibil-
ity matrix and location of σ and Σ points are represented when 
the structure have zero, one or more symmetry planes.
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1 Introduction
This paper deals with planar-frame structure analysis. The 

main purpose of this paper is to reduce the number of equations 
using symmetry, and to give advantage to the planar-frame 
structures which have symmetry plane(s). 

The frame structures are significant in road-vehicle chassis 
and rail bogie design. The main loads in the frame are caused 
by weight force, longitudinal and lateral acceleration, drive-
line torque. (Trencséni and Palkovics, 2011). The planar-frame 
structure calculation is difficult because of cyclic integrals and 
variables (See nomenclatures). The planar-frame structures 
have the following features.

● The frame beam cross section middle line forms a closed 
planar graph.

● The cross section has at least one principal axis, which is 
perpendicular to the plane.

● The curvatures of the curved beam sections are generally 
mild.

● The corners are infinitely rigid, small and short sections 
compared to the overall size of the frame.

Deformations caused by the normal and shear forces could be 
negligible compared to the bending and torsion resulting defor-
mation in the classical method (Bieck, 1927; Erz, 1957; Fabry, 
1952; Fekete, 1973; Kherndl, 1883; 1884; Michelberger and 
Sályi, 1969; Palotás, 1951; Schwertner, 1950; Sutter, 1947).

In the following, six internal load components are taken into 
consideration applying the principle of work. The stress distri-
butions in the cross sections, caused by the warp torsion and 
shear are neglected. These must be kept in mind in case of thin-
wall structures. The most generally used planar-frame structure 
in vehicle design is the rectangular-shaped frame. There the 
number of symmetry planes can be zero, one, two, three or more. 
In these frames the sections have the following characteristic 
parameters: l section length, I bending inertia, It torsion inertia, 
E Young modulus, G Shear modulus, A cross section area. In 
general case the section is not managed as symmetric structure. 
The planar structure can only be symmetric if it has at least two 
opposite sections which have the same mentioned features.
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2 Planar-frame structure loads in classical method
The planar-frame structure for planar load was worked out 

by Antal Kherndl in the 19th century and it is called “σ-point 
method”. This method neglects the deformations caused by the 
normal and shear loads (Kherndl, 1883; 1884). The planar-frame 
structure for perpendicular load was examined by Béla Sályi 
who worked out the dual pair of the σ-point method in the end of 
the 20th century, which is called “Σ-point method”. This method 
neglects the deformation caused by the shear load (Sályi, 1966).

Both methods use statically determined basic system frame and 
the cut is not in the line of the frame, but at an inner point, which 
is in contact to the frame with infinitely rigid beams (Fig. 1).

The six internal loads are collected in Tab.1.
The matrix coefficients of the compatibility equations 

are denoted by δik, where i, k = {1, 2, 3, 4, 5, 6}. The indices 
i, k = {1, 2, 3} are used for the planar loads and i, k = {4, 5, 6} 
are used for the perpendicular loads. If the frame is planar, the 
planar and perpendicular loads are divided into two orthogonal 
groups, so δik is zero if i = {1, 2, 3} and k = {4, 5, 6}. In the xy 
plane the σ point can be located, where δik is zero if i, k = {1, 2, 3}
and i ≠ k. These conditions result that the frame’s “principal 
axes” point to the same directions as it was supposed with the 
direction of unit internal loads. Continuing this process, in the 
x’y’ plane a Σ point can be located, where δik = 0, if i, k = {4, 5, 6}
and i ≠ k. In general case the σ and Σ points are located in differ-
ent positions causing more complex and time-consuming calcu-
lation. The z and z’ axes usually are parallel.

The Kherndl-Sályi methods replaced the original beams with 
sliced beams, which were realized as physical beams. The inner 
forces in the cross sections were calculated by the principle 
of work. It is simply shown that there is no change in the cal-
culation if the slice is in different position from task to task  
(Sutter, 1947). (Fig. 2-7).

The σ and Σ points are located in the plane of the frame, but 
usually are located in a different position and the coordinate sys-
tem can be different as well. The matrix coefficient of the compat-
ibility equation, in case of s is the arc length along the frame (1-3).

(1)

(2)

(3)

Tab. 1. Six unit internal loads

i 1 2 3 4 5 6

Xi 1 [N] 1 [N] 1 [Nm] 1 [Nm] 1 [Nm] 1 [N]

Fig. 4. Equivalent loads caused by X3 force

Fig. 1. Representation of σ point (left) and Σ point (right)

Fig. 2. Equivalent loads caused by X1 force

Fig. 3. Equivalent loads caused by X2 force
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The coefficients with mixed indices (4-6):

The matrix coefficients in case of perpendicular load (7-9),

and finally the coefficients with mixed indices (10-12).

The equations can be added in other way, if the unit loads are 
written as in the tables below (Tab. 2-7).

With this the coefficients are collected in Tab. 4-7.
In case of suitable choice of xyz (x’y’z’) coordinate axes, the 

mixed indices coefficients can be zero and thus six statically 
indetermined equations can be easily calculated. Because of 
the cyclic integral, the general curvature planar-frame struc-
ture’s “principal axis” and “centre of gravity” calculations are 
difficult. Here the centre of the gravity means the location of 
the σ and Σ points. The calculation task could be easier, if the 
frame has at least one symmetry plane. In case of one symme-
try plane, the “principal axes” are given and there is no need to 
calculate the first or second coordinate of σ and Σ points. If the 
structure has two symmetry planes the “principal axes” and σ 

(7)

(10)

(8)

(11)

(9)

(12)

i mi(s) ni(s) qi(s)

1 -y -cosα sinα

2 x -sinα -cosα

3 1 0 0

i mi(s) ti(s) qi(s)

4 sinα’ cosα’ 0

5 -cosα’ sinα’ 0

6 -ysinα’-xcosα’ -ycosα’+xsinα’ 1

Tab. 3. Units loads in case of perpendicular load

Tab. 2. Unit loads in case of planar load

(4)

(5)

(6)

Fig. 5. Equivalent loads caused by X4 force

Fig. 6. Equivalent loads caused by X5 force

Fig. 7. Equivalent loads caused by X6 force
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or Σ points coincide. Three symmetry planes do not give extra 
information about the location of σ or Σ points, and the number 
of “principal axes” are infinite.

3 Calculation in general case
For general shape frame calculation the “principal axes” 

and locations of σ and Σ points are time-consuming. Instead 
of xy (x’y’) coordinate system, the frame analysis is done in 
the ξη arbitrary direction coordinate system. Both of these sys-
tems have the same origins, σ or Σ points. The xy (x’y’) axes 
are rotated with γ (γ’) angles. The elementary ds sections are 
defined with r (r’) local vectors and φ (φ’) angles. The main 
purpose is to determine the γ (γ’) angles where xy (x’y’) are 
principal axes (Fig. 8).

The value of δ12 is zero in xy coordinate system, if the xy coor-
dinate axes point into the principal axes directions (13). In the 
ξη coordinate system it cannot be zero, because ξη axes are not 
principal axes (14). If the γ and γ’ angle is chosen correctly in 
the the ξη coordinate system, the xy axes can be principal axes.

Similarly to planar load, in case of perpendicular load the first 
mixed indices coefficient δ45 is zero (15), if the x’y’ coordinate 
axes point into the suitable direction. (Just the geometrical sym-
metry is required in (15) because of trigonometric functions.)

The γ and γ’ angles are determined with the following equations:

From these equations, two γ (denoted by γ1, γ2) and two γ’ 
(denoted by γ’1, γ’2) angles are given, which are perpendicular 
(γ1 ⊥ γ2 and γ’1 ⊥ γ’2).

Comp M N Q

δ11    

δ22    

δ33    

Tab. 4. Matrix coefficients in case of planar load

2 dcos s
AE

α∫

0 0

Comp M N Q

δ12    

δ13    

δ23    

Tab. 5. Matrix mixed coefficients in case of planar load

0

0

0

0

Comp M T Q

δ44    

δ55    

δ66    

Tab. 6. Matrix coefficients in case of perpendicular load

0

0

Comp M T Q

δ45    

δ46    

δ56    

Tab. 7. Matrix mixed coefficients in case of perpendicular load

0

0

0

(13)

(14)

(15)

(16)

(17)

(18)2' ' ' ' ' 0A tg B tg Aγ γ − 
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The A and B coefficients are given below:

Rectangular-shaped frames have the following features on 
all sections:

The next step of the investigation is to determine the location 
of σ and Σ points. The coefficients δ13 and δ46 are zero if the x or 
x’ coordinate axes are on the symmetry axis. If the σ or Σ points 
are on the x or x’ coordinate axis, the task is to calculate only the x 
or x’ coordinate. Furthermore the third mixed indices coefficients 
δ23 and δ56 are zero if the y or y’ coordinate axes are on the sym-
metry axis and it is needed to calculate only the y or y’ coordinate.

4 Calculations with symmetry plane(s)
In general case (without any symmetry) the task is leading 

to six simple equations if the xyz or x’y’z’ coordinate systems 
are known. The σ and Σ points mostly are in different positions, 
furthermore x and x’, y and y’ coordinate axes are not parallel. 
This means that there is need to determine the principal axes 
and locations of σ or Σ points without any symmetry support. 
It must be examined whether the deformation caused by normal 

and shear loads are negligible. If not, (13) and (15) must be 
applied. The tables below show how many compatibility equa-
tions must be determined in different number of symmetries for 
the analysis. The unknowns are signed with “●” symbol (see 
Tab. 8) and the given unknowns (where there is no need for 
calculation) with “○” symbol.

4.1 Rectangular-shaped structures 
with one symmetry plane
The rectangular-shaped frame structure with one symmetry 

plane is the first step in the reduction process. If the structure 
had not any symmetry, it would cause a large number of equa-
tions and it would not be possible to reduce them. The frame 
has the following α angles in order: 0°, 180°-α, 180° and α, if 
the first section is principal axis. In case of rectangular-shaped 
section between two opposite sides there is 180° difference. 

With this consideration, the simplified mixed indices matrix 
coefficients are:

In case of one symmetry plane the second argument is zero 
in (13), so the deformation caused by the normal and shear load 
is zero thus the “principal axes” are real principal axes.

Because of the symmetry plane, one of the σ or Σ point’s 
coordinates is given. At the first column y axis is principal axis, 
so only the y coordinates must be calculated. At the second col-
umn x axis is principal axis, so only the x coordinates must be 
calculated (see Tab. 9).

4.2 Rectangular-shaped structures 
with two symmetry planes
It is worth dealing with symmetry or antisymmetry of load, 

which can reduce the computational work. The rectangular-
shaped frame with two symmetry planes has two pair sections 
with the same features. The α angles are in order 0°, 90°, 180° 
and 270°. The statically indetermined inner forces can be writ-
ten with six independent equations and do not cause difficulty to 
solve them. In case of two or more symmetry axes, the symme-
try does not divide into six groups, but eight orthogonal groups. 
However, there are two statically determined groups, thus there 
is no need to take them into consideration. With this considera-
tion, the simplified mixed indices matrix coefficients are:

Because of the two symmetry planes, σ or Σ is given and the 
two statically determined independent equations can be solved 
easily. Those are equations with a single unknown. In the tables 
they are denoted by “●” symbol (see Tab.10).

Fig. 8. The basic ξη and rotated xy coordinate systems

(19)

(20)

(21)

(22)

(25)

(23)

(24)

(26)

(27)
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4.3 General shape structures with three 
or more symmetry planes
The general shape frame structure occasionally can be found 

in vehicle. The σ or Σ points are located in the symmetry planes 
section. There is no need to calculate them. The “principal 
axes” can be chosen without any difficulty.

5 Conclusions
This paper showed that the symmetry usage during the 

commercial vehicle design process can be applied to reduce 
the governing equations. The planar-frame structures can be 
divided into four groups. The first group contains those struc-
tures where there is no symmetry at all; they are called general 
planar-frame structures. The “principal axis” (in the classical 
method) is not a real principal axis. The frame structures with 
one symmetry plane are in the second group. There is oppor-
tunity here for reduction in contrast with the first group. The σ 
or Σ points are located on the symmetry axis. The deformations 
caused by normal and shear loads are zero and the “principal 
axes” are real principal axes (the deformation is calculated, but 
given zero). The third group contains those structures where 
the calculation can be supported with two symmetry planes. 
This gives the opportunity to reduce the number of descrip-
tive equations. The σ and Σ points, and the principal axes are 
coincident. The last group contains those structures which have 
three or more symmetry planes. These structures have infinite 
number of principal axes position, but do not give extra advan-
tage in calculation.

6 Appendices
It is important to define the sign rule. Both the force and 

torque vectors which are acting in the σ or Σ points point to +x, 
+y, or +z axis and the free sliced section is located in the first 
quarter. The bending torque is positive if the shirred side is the 
outside in case of planar load. In case of perpendicular load 
the torque positive if the shirred side is located on the +z side. 
The torsion is positive if the free end of the frame is turning 
out. The shear is positive if the shear vector points out from 
the frame. In case of perpendicular load the shear is positive if 
the vector points at +z. And finally the normal load positive if 
it is tensile.

a.) Substitution of torsion stiffness (for two end bounded,
prismatic thin-wall beam, (Erz, 1957))

where:

Warp stiffness: EIω [m6]

b.) Generalization of basic system
(Original basic system)

where: a: Load from external load
 B: Load from unit load
 R: Spring matrix of the frame
(Transformed basic system)

Planar load
x y γ 1 2 3

● ● ● ● ● ●

Perp. load
x’ y’ γ’ 4 5 6

● ● ● ● ● ●

Tab. 8. The required coordinates and unknowns in case of zero symmetry 
(general case)

Symmetry 
of load A S

Planar load
x y γ 1 2 3

○ ● ● ○ ○ ○ ○ ● ● ○ ○ ●

Perp. load
x’ y’ γ’ 4 5 6

○ ● ● ○ ○ ○ ○ ● ○ ● ● ○

Symmetry 
of load S A

Tab. 9. The required coordinates and unknowns in case of one symmetry 
plane (A-Antisymmetric, S-Symmetric)

Symmetry 
of load AS SA SS AA

Planar load
x y γ 1 2 3 Det. Eq.

○ ○ ○ ● ● ● ●

Perp. load
x’ y’ γ’ 5 4 Det. Eq. 6

○ ○ ○ ● ● ● ●

Symmetry 
of load AS SA SS AA

Tab. 10. The required coordinates and unknowns in case of two symmetry 
planes
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where: d = BTRa
 D = BTRB

The final load:

This makes the using of different basic systems in one task 
possibly. It was used by Sutter for the first time.

c.) Substitution of cyclic integral in digital form 
(Argyris and Kelsey, 1963)

d = BTRa
D = BTRB
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φ(s) :Angle between r local vector and ξ axis [°]
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