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Abstract
In this paper the examination of lattice-like structure is intro-
duced. Lattice structures are built of crossmembers, side-wall 
and longitudinal beams. Both the crossmember and the beams 
can be symmetric, but the paper deals global symmetry of lat-
tice. This global symmetry means a longitudinal and lateral 
symmetry plane of the structure. Similarly to the structure, the 
outer load can be symmetric or antimetric for these two sym-
metry planes, as well. The main purpose of this paper is to 
show reduction the number of the unknowns of the compatibil-
ity equation and predict the distribution of the bending moment 
in beams for practical use.

Keywords
Lattice-like structure, commercial vehicle lattice structure, 
commercial vehicle preliminary design, symmetric and anti-
metric load, bending moment distribution on longitudinal and 
side-wall beams

Nomenclatures
a Distance between side-wall and longitudinal beams [m]
b Distance between two longitudinal beams [m]
L Distance between two crossmembers [m]
C Constant for the calculation [-]
D1 Constant for the calculation [Nm]
D2 Constant for the calculation [Nm]
F Load (outer) [N]
Q0 Shear from the outer load [N]
M0 Bending moment from the outer load [Nm]
E Young Modulus [MPa]
G Shear Modulus [MPa]
A Crossmember cross-section area [m2]
A’ Side-wall beam cross-section area [m2]
A” Longitudinal beam  cross-section area [m2]
I Crossmember bending inertia [m4]
I’ Side-wall bending inertia [m4]
I” Longitudinal bending inertia [m4]
γ Parameter for bending [-]
γ’ Parameter for shear [-]
k Indices of the unknowns [-]
m number of beams [-]
n number of crossmember [-]
δij	 Coefficient	of	the	comp.	matrix	[1/m3]
δ0j	 Coefficient	of	the	constant	[N/m2]

 
1 Introduction

This	 paper	 deals	 with	 statically	 indetermined	 lattice-like	
structure	analysis.	The	statically	indetermined	structure	can	be	
only	designed	by	reduction	or	iteration	due	to	the	huge	amount	
of	 governing	 equations	 and	 unknowns.	 Preliminary	 design	
based	on	simplification	and	approximation,	and	a	simple	math-
ematical	model	using	 is	 recommended.	The	main	purpose	of	
this	paper	is	to	reduce	the	number	of	the	unknowns	of	the	com-
patibility	equation,	in	addition	examine	the	bending	moment	on	
the longitudinal and side-wall beams function of the different 
orth.	groups.	In	the	following,	bending	moment	from	the	outer	
act	only	on	 longitudinal	beams,	 thus	giving	advantage	 to	 the	
commercial	vehicle	(under-body	or	roof)	structure	preliminary	
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design.	There	is	a	non	vehicles	application	of	the	lattice	struc-
ture	in	(Pristyák,	1997).	It	is	worth	to	examine	the	distribution	
of	the	bending	moment	if	the	outer	load	acts	only	on	side-wall	
beams,	but	the	applied	basic	system	is	need	to	be	modified	and	
the	whole	analysis	is	too	long	to	be	included	in	this	paper.	

Lattice-like	structures	are	significant	in	road	vehicles	chassis	
and	frame.	Vehicle	frames,	bus	floor	frames	or	a	complete	vehi-
cle	can	be	modelled	as	lattice.	There	is	another	application	for	
lattice-like	structures.	(Schilling,	1925)	Exact	and	approximate	
methods	have	been	developed	for	the	calculation	of	lattice-like	
structure	based	on	the	force	and	the	displacement	method	(Palo-
tás,	 1953).	 	Two	 types	 of	 lattice	 are	 used	 in	 practice.	One	 is	
poor	 resistance	 to	 torsion,	 the	other	 is	 torsional	 resistance.	 In	
the	following	this	paper	deals	with	lattice	structures	which	are	
poor	resistance	to	torsion.	The	main	load	in	lattice	comes	from	
weight force, longitudinal and lateral acceleration of the vehi-
cle.	Contrary	to	the	planar-frame	structures	(Harth	and	Michel-
berger,	2014),	here	the	planar	load	is	taking	out	of	consideration.	
The	paper	only	involves	the	examination	of	perpendicular	load	
which	can	be	acted	only	on	node.	The	task	in	these	structures	is	
to	make	the	planar	lattice	to	be	able	working	under	perpendicu-
lar	load.	Node	is	an	intersection	where	beam	and	crossmember	
intersect	each	other	and	the	contact	faces	surrender	only	force.	

In	 the	 following,	 two	 internal	 load	components	 (shear	and	
bending)	are	taken	into	consideration	applying	the	principle	of	
work.	The	 stress	 distribution	 in	 the	 cross	 sections	 caused	 by	
shear	is	neglected.	

There	 are	 three	different	 size	 are	 existing	 in	practice.	The	
first	case	is	when	the	sides	of	lattice	are	built	from	equal	num-
ber	of	field,	and	either	is	even.	These	structures	were	examined	
in	 (Michelberger,	 1968).	 The	 second	 case	 is	 when	 lattice	 is	
built	from	equal	number	field,	and	either	is	odd.	The	third	case	
is	when	lattice	is	built	from	different	number	of	fields.	One	is	
even	the	other	is	odd.

Henceforward, size of lattice structure is featured with num-
ber	 of	 longitudinal	 beams	 and	 crossmembers.	 Two	 of	 longi-
tudinal	beams	called	side-wall	beams	are	usually	have	differ-
ent	property	(cross-section	area,	bending	inertia).	Side-wall	is	
connected	to	the	side-wall	beam	with	welding.	Similar	to	the	
side-wall	beam,	first	and	last	crossmember	have	usually	differ-
ent	inertia	properties	from	the	inner	crossmembers	because	the	
front	and	rear	panel.	The	most	generally	used	beam	number	is	
between	4	and	5,	and	crossmember	number	is	between	6	and	8	
in	buses	and	coaches.	Erz	examined	the	torsion	of	the	structure	
with 2 longitudinal beams, Michelberger	extended	out	to	4	lon-
gitudinal	beams	(Erz,	1957).

On	Fig.1	a	well-known	city	bus	can	be	seen	with	8	cross-
member in the forward section and 5 crossmembers in the rear 
section.

Fig. 1	Ikarus	280	frame	structure	(Source:	http://forum.index.hu/Article/show
Article?t=9043237&go=124004285&p=1)

2 Description of lattice model
Examined	lattice	structure	has	two	symmetry	planes.	One	is	

the	longitudinal	symmetry	plane;	the	other	is	lateral	symmetry	
plane.	To	distinguish	the	two	symmetry	planes,	the	longitudinal	
plane	is	always	parallel	with	the	course.	Number	of	beams	is	m, 
and number of crossmembers is n.

In	 this	 model	 the	 crossmembers	 have	 the	 same	 proper-
ties, but the side-wall and longitudinal beams can be differ-
ent	because	the	side-wall.	The	most	obviously	difference	is	in	
bending	inertias	and	in	cross-section	area.	The	examined	model	
is	parametric	 in	aspect	of	a, b, L, A, A’, A”, I, I’, I”, E, and 
G.	Applied	marking:	a:	distance	between	side-wall	and	longi-
tudinal beam, b:	distance	between	two	longitudinal	beams,	L:	
distance between two crossmembers, I:	crossmember	bending	
inertia, A:	crossmember	cross-section	area,	I’:	side-wall	bend-
ing inertia, A’:	 side-wall	 cross-section	 area,	 I”:	 longitudinal	
beam bending inertia, A”:	longitudinal	beam	cross-section	area.

Fig. 2 Inertias and cross-section areas of the lattice structure

This	structure	on	Fig.	2	 is	statically	 indetermined	at	 (m-2)
(n-2)/4.	 The	 lattice	 structure	 becomes	 statically	 determined	
(statically	determined	basic	system)	with	slices	in	the	intersec-
tion	at	the	side-wall	beam	and	joined	by	hinges.	The	crossmem-
bers	and	longitudinal	beam	are	connected	with	spherical	joints	
to	each	other.	All	 the	beams	 (side-wall	and	 inner)	and	cross-
members are considered to be of constant stiffness and cross-
member	to	be	of	identical	stiffness.	This	model	is	applicable,	
when	 the	stiffness	of	 the	crossmembers	are	equal	 in	couples.	
(In	this	case:	instead	of	I, the I1, I2…Ik	inertias	are	applied)

http://forum.index.hu/Article/showArticle?t=9043237&go=124004285&p=1
http://forum.index.hu/Article/showArticle?t=9043237&go=124004285&p=1
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Symmetry	about	the	longitudinal	plane	is	general,	but	lateral	
plane	 is	 assumed,	 thus	 helping	 the	 preliminary	 design	work.	
The	bending	moment	distribution	on	beams	can	be	divided:

 – in the ration of  the I’ and I”	bending	inertias	in	symmet-
ric	case	(Michelberger,	1968)	and	

 – in the ratio of the I’ and I” furthermore a and b in anti-
metric case

if I	→	∞	and	load	acts	on	crossmember.
In	 the	 practice	 the	 bending	 inertia	 of	 the	 crossmember	 is	

finite,	thus	the	paper	is	examined	the	distribution	of	the	bending	
moment	on	beams	in	the	function	of	the	crossmember	stiffness.

In	this	paper	the	symmetric	and	antimetric	loads	are	intro-
duced.	The	number	of	the	unknowns	is	k in	the	examined	lat-
tice-like	structures.

k
n

n=
− 2

2
if is even, or

k
n

n=
−1

2
if is odd

Fig. 3	Statically	determined	basic	system	(n is even)

Fig. 4	Statically	determined	basic	system	(n is odd)

3 Applied load system
Bending	moment	 preliminary	 distribution	 (estimation)	 on	

beams	can	be	only	applied	if	the	outer	load	acts	on	crossmem-
bers.	

If the outer load act on longitudinal or side-wall beam Palo-
tás offer	a	method	for	solution.	(Palotás,	1953)

In	our	examination	outer	 load	can	act	only	on	node	of	 the	
longitudinal	beam.

In	the	best	case	crossmember	is	loaded	uniformly	called	ele-
mentary	load	case.	To	apply	our	load	it	is	needed	a	force	system	
which	 is	 in	static	balance.	An	elementary	and	an	equilibrium	
force	system	acts	on	crossmembers	(Fig.	5-7).	The	summarized	
force	system	can	be	symmetric	or	antimetric	 for	 longitudinal	
and	lateral	symmetry	planes.	In	the	following	paper	examined	
lattices	are	consist	4	beams	and	8	crossmembers.

The other case where outer load is acting between two nodes 
was	worked	out	by	Palotás	(Palotás,	1953).

Fig. 5 Elementary	force	system

Fig. 6 Equilibrium	force	system

Fig. 7 Summarized	force	system

If	the	outer	load	is	symmetric	for	the	longitudinal	symmetry	
plane	called	S1, if antimetric called A1.	If	the	load	is	symmetric	
for	the	lateral	symmetry	plane	called	S2, if antimetric called A2.

In	 the	 following,	 examination	 of	 a	 lattice	 structure	 with	 
4	longitudinal	beams	8	crosmembers	are	introduced,	applying	
two	symmetry	planes	offering	a	fast	approximation	of	bending	
moment	to	ease	preliminary	decision	and	to	evaluate	the	effect	
of	necessary	further	modifications.

The load can be (in shorter form) S1S2, S1A2 and A1S2, but 
cannot be A1A2 because under this load case the structure 
becomes	instable	(poor	resistance	to	torsion)	(Fig.	8	-	Fig.	11).

(1)

(2)
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Fig. 8 S1S2 load case (weight load)

Fig. 9 S1A2 load case (acceleration or deceleration)

Fig. 10 A1S2 load case (turning)

Fig. 11 A1A2 load case (kinematic load-torsion)

The	deformation	caused	by	shear	force	is	taking	into	consid-
eration	in	the	model	at	first,	but	if	it	possible	to	neglect	to	make	
the	 model	 more	 easier	 for	 practice	 using.	 Take	 consider	 the	
bending	moment	developing	in	the	side-wall	beam	at	cuts	above	
the crossmember due to unknown internal forces (moment) in 
the	regular	lattice	with	stiff	crossmember	is	of	the	form:

Dx d 0+ =

Bending moment and shear from x1 unit load are calculated 
for	coefficients	of	the	compatibility	equation.	The	matrix	coef-
ficients	of	the	compatibility	equations	are	denoted	by	δij, where 
i, j=	{0,	1,	2,	…k}considering	the	symmetry	of	load.

The indices i means that xi unit load act on the jth 
(1 < j	≤	n	−	1)	crossmember.	If	the	indices	i = 0, that means the 
constant	coefficient.

4 Fully symmetric loads (S1S2)
This	load	case	is	the	most	generally	with	symmetric	weight	

load	in	the	front	and	rear	axle.	This	model	illustrates	when	the	
air	springs	are	connected	to	nodes	directly	and	the	weight	of	the	
vehicle	is	reduced	the	first	and	the	last	crossmembers,	thus	lon-
gitudinal	beams	are	loaded	with	constant	bending.	To	keep	the	
lattice	in	equilibrium	state	there	are	two	force	systems.	All	the	
load vectors are F.	This	 examination	method	was	 performed	
6	 and	 7	 crossmembers,	 but	 only	 8	 crossmembers	 lattice	 are	
shown	on	Fig.	12.

Fig. 12 Lattice structure with S1S2	load	and	8	crossmembers

The	 following	 coefficients	 are	 must	 be	 calculated	 to	 the	
compatibility	equation	(bending	and	shear).

Fig. 13 m1:Bending	moment	from	x1 unit load

δ11
2

2

4
3

1 1 6
3

2 3B L
I I

a
IL

a b=
′
+

′′






 + +( )

δ12
2

23
1 1 4

3
2 3B L

I I
a
IL

a b=
′
+

′′






 − +( )

(4)

(5)

(3)



59Examination of Lattice-like Structure for Vehicle Preliminary Design 2015 43 2

δ13
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And	the	bending	moment	of	basic	system	due	to	outer	load:

δ01
25

3
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I
= −
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δ δ02 03

2

2B B FL
I

= = −
′′

 

Fig. 14 q1:	Shear	from	x1 unit load
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The	summarized	coefficients	of	 the	compatibility	equation	
are	the	following,	considering	the	bending	and	shear:
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When n =	8,	the	compatibility	equation	is	written	as:
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If	the	structure	has	6	crossmembers	the	compatibility	matrix	
is	created	easily	from	(19)	with	first	row	and	column	removal.	

In case of n	is	odd:
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Here	is	opportunity	to	converse	to	γ and γ’	parameters.	
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In	other	way:
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where	the	new	parameters	are:

γ =
+( ) ′

+
′′









IL
a a b I I

3

2 2 3
1 1 ,

′ =
′
+

′′






γ LA

a A A2
1 1 ,

C I
aA a b

=
+

6
2 3( )

,

(6)

(7)

(9)

(8)

(13)

(12)

(11)

(10)

(14)

(16)

(15)

(17)

(18)

(19)

(20)

(21)

(22)

(24)

(23)

(25)



60 Period. Polytech. Transp. Eng. P. Harth, P. Michelberger†
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If	all	the	former	parameters	set	to	value	1,	distribution	of	the	
bending moment on side-wall beam and longitudinal beam can 
be	seen	(Fig.	15	and	Fig.	16).

On	figures	the	xi	⁄	FL ratios can be seen in function of the jth 
crossmember.

Fig. 15 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

Fig. 16 Bending moment with distribution on the side-wall beam (I’)
and longitudinal beam (I”) (with shear)

If a, b and L parameters	are	set	to	general	value											
(a	=	0,7m b = 1,5a and L	=	1,25m),	the	digraph	are	modified	

(Fig.	17	and	Fig.	18).	
In	 the	figures	 (Fig.	17	and	Fig.	18)	can	be	 seen	 that~50%	

of	the	outer	load	goes	to	the	side-wall	beam	and	the	rest	~50%	
stays	 on	 the	 longitudinal	 beam.	 According	 to	 the	 original	
assumption	(I	→	∞)	the	model	is	acceptable,	but	the	reduced	
calculation	has	got	inaccuracy.	The	difference	between	calcu-
lated	value	and	mean	can	be	seen	in	Table	1-2.

In the following load cases the shear is neglected, thus to 
make	the	calculation	easier.

Fig. 17 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

Fig. 18 Bending moment with distribution on the side-wall beam (I’)
and longitudinal beam (I”) (with shear)

Table 1	Inaccuracy	from	the	mean	value	(50%),	without	shear

Crossmember 2 3 4 5 6 7

Side-wall beam 
(without shear)

-11% +2% +1% +1% +2% -11%

Long.	beam	
(without shear)

+11% -2% -1% -1% -2% +11%

Table 2 Inaccuracy	from	the	mean	value	(50%),	with	shear

Crossmember 2 3 4 5 6 7

Side-wall beam 
(with shear)

0 -1% -6% -6% -1% 0

Long.	beam	(with	
shear)

0 +1% +6% +6% +1% 0

5 Semi symmetric loads (S1A2)
The	outer	 load	 is	modified,	antimetric	 for	 the	 lateral	 sym-

metry	plane.	This	load	case	illustrates	when	the	vehicle	accel-
erates	or	decelerates.	In	the	case	two	different	force	systems	is	
applied.	The	first	system	is	FA, the second is FB.	The	relation	
between	the	two	systems	is:

F n
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Fig. 19 Lattice structure with S1A2	load	and	8	crossmembers

The	coefficients	for	the	compatibility	equation	are:
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If	 all	 the	 parameters	 set	 to	 value	 1,	 distribution	 of	 the	
bending moment on side-wall beam and longitudinal beam is 
the	following	(Fig.	20).

Fig. 20 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

If a, b and L	parameters	are	set	to	general	value											
(a =	0,7m		b = 1,5a and L =	1,25m),	the	digraph	is	modified	

(Fig.	21).	

Fig. 21 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

6 Semi symmetric loads (A1S2)
The	examination	method	is	similar	to	the	previous	case,	but	

the	bending	moment	not	only	depend	on	bending	inertias,	but	
geometric	parameters	(a and b)	also.
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Fig. 22 Lattice structure with A1S2	load	and	8	crossmembers

Similarly	to	the	outer	load,	the	unit	load	is	modified	as	well.

Fig. 23 Bending moment from x1 unit load

The	 following	 coefficients	 are	 must	 be	 calculated	 to	 the	
compatibility	equation	(only	bending).	
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And	the	bending	moment	of	basic	system	due	to	outer	load:
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Finally,	compatibility	equation	is	written	as:
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The	equation	system	with	the	new	parameter:
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If	all	the	parameters	set	to	value	1,	distribution	of	the	bend-
ing moment on side-wall beam and longitudinal beam are the 
following	(Fig.	24).

Fig. 24 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

If the a, b and L	parameters	are	 set	 to	general	value	 (a = 
0,7m		b = 1,5a and L =	1,25m),	the	digraph	is	modified	a	bit	
(Fig.	25).
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Fig. 25 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear)

7 Conclusion
In	this	paper	three	load	cases	are	introduced	(S1S2, S1A2 and 

A1S2)	of	four.	The	mentioned	structure	can	be	described	with	
δ	coefficient	or	γ	parameters	as	well.	Latter	are	applicable	 in	
reduced	form	for	further	investigations.	The	first	case	is	when	
the	load	is	symmetric	both	the	longitudinal	and	lateral	symme-
try	planes	called	S1S2.	The	original	assumption	was:	the	bend-
ing moment from the outer load can be divided in ratio of the 
longitudinal and side-wall beams if the outer load is S1	 (only	
long.	beams	are	loaded).	If	the	outer	load	is	antimetric	then	can	
be divided in ratio of the beam inertias and a and b	dimension.	
In all cases I	→	∞	is	assumed.	This	paper	examines	different	
load	(act	only	on	long.	beams)	cases	when	I	is	sufficient	large.

On	 all	 diagrams	 calculated	 and	 estimated	 I	→	∞	 bending	
moment	distribution	can	be	seen	with	black	and	green	curves.

If the bending inertia of the side-wall and longitudinal beams 
approximately	equally	magnitude,	the	50%	of	bending	moment	
from	the	outer	load	acts	on	longitudinal	beam,	and	50%	of	the	
bending	moment	goes	to	side-wall	beam	(Fig	26,	27	and	28).	

Fig. 26 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=0,01

Fig. 27 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=1

Fig. 28 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=100

In the second case when the load is S1A2, near the similar 
result is giving similar to S1S2,	because	the	outer	load	is	sym-
metric	for	the	longitudinal	plane	(Fig	29,	30	and	31).	Bending	
moment	distribution	is	symmetric.

Fig. 29 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=0,01
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Fig. 30 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=1

Fig. 31 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=100

In the third case (A1S2),	near	 the	 inertias	 ratio	appears	 the	
effect of  a and b	in	bending	moment	distribution.	If	a and b are 
set	to	practice	value	(a=0,7m,	b=1,05m), the bending moment 
distribution	can	be	seen	on	Fig.	32-34	in	function	of	the	side-
wall	and	longitudinal	beam	inertias	ratio.

Fig. 32 Bending moment distribution on the side-wall beam (I’)
and longitudinal beam (I”) (without shear) I=0,01

If the bending inertia of the side-wall and longitudinal 
beams	approximately	equally	magnitude,	the	~20%	of	bending	
moment from the outer load acts on longitudinal beam, and 
~35%	goes	to	side-wall	beam.	If	 the	bending	inertia	value	of	
the crossmember at least equal with the other beams inertia, the 
distribution of the longitudinal beam bending moment estimate 
is	acceptable	for	practical	use,	when:

I I I' "≈ ≤
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