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Abstract
The paper focuses on supply chain modeling issues, namely 
how subspace identification techniques can be used to charac-
terize the strength of relations between certain system param-
eters. This might be useful when no knowledge about the 
internal workings or inner structure of the system is available, 
thus only blackbox like approaches can be utilized. Here let 
us show how supply chains can be identified and modeled by 
deterministic linear state space models and how the accuracy 
of the identified model reflects the relation between certain 
system parameters.
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1 Introduction
In logistics the improvement of material and information 

flow plays significant role, thus accurate models of the system 
are needed in order to predict its behaviour and thus improve 
its performance. Supply chains encompass the full range of 
intra-company and inter-company activities beginning with raw 
material procurement, through manufacturing and distribution 
(Viswanadham et al., 2001)

The identified models of logistical processes (LP) may be 
helpful to predict various features related to the modeled sys-
tem. A framework to promote the better understanding of supply 
chain performance measurement and metrics can be followed for 
example in (Gunasekaran et al., 2004).

Depending on the knowledge about the modeled system a 
broad range of solutions can be utilized. Since complex logisti-
cal systems are non-linear MIMO systems and are influenced 
by many parameters their modeling is not a trivial task. Many 
methods have been proposed to deal with MIMO systems in the 
literature. Perhaps the most popular tool in this topic is the linear 
parameter varying (LPV) structure by which non-linear systems 
can be modeled and controlled on the basis of linear control the-
ories (Baranyi et al., 2007; Szeidl et al., 2009; Péter et al., 2014). 

If there is no knowledge about the inner structure of the sys-
tem such as for instance the concrete service strategy and other 
internal mechanisms only black box like solutions (mainly 
heuristic approaches) might be utilized. In this case the system 
might be identified based on measured input-output data. In 
the literature many models (as for instance scheduling, trans-
portation planning, flow-shop sequencing problem) of logistic 
systems are based on the fuzzy set and fuzzy control theory, 
statistics or their combination (Harmati et al., 2007), (Orbán et 
al., 2009), (Jing-Shing et al., 2002) (Sevastjanov et al., 2003). 
It is difficult to find a proper mathematical model in form of 
differential equations which would suitable approximate the 
behaviour of the observed logistical process even if the identi-
fication of the system is considered locally. Subspace identifi-
cation techniques combined with tensor product transformation 
seem to be promising to model complex logistical processes 
based on input-output data. In this case there is no need for an 
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explicit model parameterization, which is a rather complicated 
matter for multi-output linear systems (Overschee et al., 2011).

In this paper let us focus on subspace identification tech-
niques aimed to model supply chains. 

The paper is organized as follows: In Section 2 the subspace 
identification for deterministic case is briefly described, Section 
3 shows how supply chains can be modelled on subspace bases. 
Finally experimental results and conclusions are reported. 

2 Overview on Subspace Identification of Linear 
Time Invariant Systems

Before turning the focus onto logistical processes, let us 
give a brief description on how subspace identification tech-
niques can be used to identify linear time invariant (LTI) vertex 
models in the parameter space. Let us assume that the local 
behavior of the logistical system is deterministic, thus it can be 
described in the well-known state space form as follows:

1k k k+ = +x Ax Bu

k k k= +y Cx Du
where xk Î n stands for the state vector, ukand yk represent the 
input and output vector respectively at time k. The goal is to find 
the model matrices A, B, C and D based on input-output pairs. 
As described in (Overschee et al., 2011). let us first arrange the 
input-output pairs into so called Hankel matrices (reflecting the 
history of our input-output data):
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and let the history of states (unknown) to be estimated encode as 
follows:

1 1i i i i j+ + − = … X x x x

It can be recognized from (2) that all row vectors in Yl|i are 
in the vector space determined by the union of row space of Xi 
and Ul|i. Let us assume that the intersection of row space of Xi 

and Ul|i is empty. The most simple alternative for estimating 
Xi  (up to a constant multiple C) is to project the row space of 
Yi onto orthogonal complement of the row space of Ul|i . The 
elements of Yi can be expressed with the help of the extended 
observability matrix Γi and lower block triangular Toeplitz 
matrix Hi form as follows (Overschee et al., 2011):
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By substituting recursively into (1) we can express the state 
sequence Xi+1as follows:

X A X Ui
i

i i+ = +
1 1

∆∆
l
,

where
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... ,

stands for the reversed extended controllability matrix (Over-
schee et al., 2011). From (6) the state sequence Xi can be ex-
pressed as:

X Y H U
1
= −ΓΓ ΓΓi l i i i l i

* *
.

By substituting (11) into (9) we obtain:

X A Y A H U Ui
i
i l i

i
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Let us express Xi +1 as the sum of two matrices, where one of 
the matrices contains only the input-output values, i.e.

1 1| ,i i i+ =X L W
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Since based on (6) 
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Let us now project Yi+1|2i onto orthogonal complement of  
Ui+1|2i. Since the projection of HiUi+1|2i onto its orthogonal com-
plement is empty subspace we obtain (Overschee et al., 2011):
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Let us investigate the structure of Oi+1. Based on (7) and (5) 
it can be expressed as:

1
1 1 2

i
i i i i j

−
+ + + +   = … …  O C CA CA x x x



Based on (21) the rank of Oi+1 equals to the rank of the state 
sequence matrix Xi +1. Equivalently, the dimensionality of the 
state vector x equals to the dimensionality of Oi+1. The rank of 
Oi+1 can be determined by singular value decomposition (SVD) 
as follows (Overschee et al., 2011): 

1 1 1 1i+ =O U S V
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where T is an arbitrary invertible square matrix representing a 
similarity transformation.
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The system matrix can be estimated in the least squares 
sense from the following set of equations:
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where Ui+1 and Yi+1 are input and output block Hankel matrices, 
respectively having one block row.

3 Supply-Chains and Subspace Identification 
In logistics the improvement of material and information 

flow plays significant role, thus accurate models of the system 
are needed in order to predict its behaviour and thus improve 
its performance. Supply chains encompass the full range of 
intra-company and inter-company activities beginning with raw 
material procurement, through manufacturing and distribution 
(Viswanadham et al., 2001).

In this section let us show how the relation between certain 
system parameters can be identified on subspace basis by using 
measurements only. Let us assume that the inner structure of the 
system is completely unknown, only measurements are availa-
ble. As it will be shown later, based on the accuracy of identified 
models the strength of relations between certain parameters of 
the system can be characterized, as well. By using this approach 
the parameters being in strong relation with a given system fea-
ture can be detected. We may consider these parameters as fac-
tors which directly influence the performance of the observed 
system. Let us refer to them as system performance factors. In 
the followings let us focus on loading systems, which are spe-
cific types of supply chains. Nevertheless, they can be consid-
ered as specific type of queuing systems, as well. During the 
experiments simulated input-output data have been used, thus 
the model of the investigated loading system had to be designed. 

Although there are various ways how to model supply chains 
or loading systems, e.g. by petri nets (Haoxun et al., 2005), by 
queuing networks (Viswanadham et al., 2001), etc. Here let us 
represent our experimental loading system by a queuing net-
work model (see Fig. 1) and use it to generate input-output data 
pairs. Queuing network model is a collection of services and 
demands, where services represent resources while demands 
stand for customers or transactions, etc. 

However in the practice we can assume that real measure-
ments are available and as already mentioned no knowledge 
about the internal workings of the system is needed. It is con-
sidered as a black box. In our experiments the generated data 
will represent the measurements and will be used to identify the 
relation between various parameters of the system on subspace 
basis. In Figure 1 the architecture of a simple loading system 
can be observed. It consist of three main stages, i.e. loading, 
transfer and unloading. In the system there are five queues, i.e. 
one for the waiting resources such as loading machines (LMs), 
one for waiting resources such as unloading (UMs) , one queue 
for vehicles waiting for unloading after arrival to the destination 
and finally on the demand side there is one queue for arriving 
demands, i.e. in this case the incoming vehicles. The number of 
resources in the system is fixed. The flow of servicing demands 
is as follows: The arrival of demands is represented by a prob-
ability variable with exponential distribution. Each incoming 
demand (vehicle) is assigned with a loading machine (if avail-
able). After assignment the loading is executed which duration 
is represented by a probability variable with exponential distri-
bution. After the loading is finished the two assigned entities 
are separated, i.e. the vehicle and the LM, which means that the 
loading machine at this point can be released and returned to the 
pool of waiting loading resources. On the other hand the loaded 
vehicle can proceed to the next stage of servicing, i.e. the loaded 
goods can be transported to the destination. Depending on the 
traffic it may take more or less time to reach the destination. 
The transportation time is represented by a probability variable 
with exponential distribution. At the destination the goods are 
unloaded. The arrived vehicles as well as the resources nec-
essary to unload the vehicle are waiting in the corresponding 
queues. The unloading process similarly to the loading one is 
represented by a probability variable with exponential distribu-
tion. After the unloading is finished the corresponding UM is 
released and the demand is considered to be completed.

During the identification let us focus on the average lead 
time, average waiting times in certain queues, arrival rate of 
demands and servicing times in certain processing blocks 
(loading, unloading, transport). Among these factors the total 
average lead time for a demand entering the supply chain is a 
crucial performance measure (Raghavan et al., 2001). In the 
following section let us introduce the parameters of the simu-
lated loading system as well as the results of the identification 
based on generated input-output data.
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4 Results
In this section let us show the identified models based on 

generated data. Although our assumption is that the modeled 
system is black-box like, let us show the setup of the simulated 
environment aimed to generate simulation data. Two experi-
ments are reported with different system settings (see Table 1 
and 2). In the first experiment the relation between the average 
waiting time of incoming vehicles (demands) and their servic-
ing stands in the focus. 200 input-output data pairs have been 
generated by the simulation environment. Among this data the 
first 100 pairs have been considered for identification. In Fig. 
1 and Fig. 2 the input and the response of the system together 
with the response of the identified model can be followed. In 
order to validate the identified model all 200 data pairs have 
been considered. As the results reflect the identified model 
accurately follows the characteristics of the measurements. In 
the second experiment as input the arrival rate of demands (see 
Fig. 5) while as output the number of waiting LMs in the cor-
responding queue has been considered. In Fig. 6 the response 
of the identified model and that of the simulated system can be 
followed. The validation – similarly to the previous example – 
is based on 200 data pairs (see Fig. 7).

Table 1 System setup for the first experiment

Parameter Value

Number of LMs 5

Number of UMs 10

E[TLoad]; exp. distribution 3 

E[Trans]; exp. distribution 3

E[TUnload]; exp. distribution 3

E[Arrival of demands]; exp. distribution 0.1

Table 2 System setup for the second experiment

Parameter Value

Number of LMs 10

Number of UMs 5

E[TLoad]; exp. distribution 3 

E[TTrans] ; exp. distribution 3 

E[TUnload]; exp. distribution 3

E[Arrival of demands]; exp. distribution 0.1

Fig. 1 The architecture of the simulated environment
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Fig. 2 Model input: average waiting time of demands
(100 input-output data pairs).
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Fig. 3 The response of the estimated model and the real measurements.
The estimation is based on 100 input-output data pairs. 
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Fig. 4 Model verification: The verification is based on
200 input-output data pairs.
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Fig. 5 Arrival rate of demands, i.e. vehicles to transport goods.
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Fig. 7 Model verification: The verification is based on
200 input-output data pairs.
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Fig. 6 The response of the estimated model together with the real 
measurements. The estimation is based on 100 input-output data pairs.
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5 Conclusion
The paper describes how subspace identification techniques 

can be used to identify supply chains based on input-output 
data. It was assumed that the internal structure of the modelled 
system is unknown, thus only blackbox like approaches can 
be considered. It was shown how the relation between system 
parameters can be identified and modelled by subspace based 
approach. Although more complex supply chains may reflect 
strong nonlinearities, in this paper only the linear, deterministic 
case was considered. 

The results clearly reflect that subspace techniques are effi-
cient for identifying supply chains. In addition, the accuracy of 
the identified models can be used to characterize the strength of 
relation between observed parameters. 

As future work we are planning to perform experiments with 
various setup of incoming rate of demands as well as to vali-
date the model on real life data. In addition, we are planning to 
investigate supply chains in connection with linear parameter 
varying framework, where all nodes will be identified on sub-
space basis.
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