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Abstract
Many application fields in transportation engineering can 
benefit from an accurate modelling of car-following behav-
ior. In particular, in recent years, an increased importance is 
assigned to embed behavioral abilities in ADAS (Advanced 
Driving Assistance Systems) and in driving automation solu-
tions. However, accurate development of car-following models 
needs for accounting of the drivers’ heterogeneity, which can 
be easily observed in car-following data. This paper contrib-
utes to analyze different sources of heterogeneity with par-
ticular focus on three factors: the dispersion over-time of the 
behavior of a single driver; the heterogeneous behaviors of dif-
ferent drivers; and the possible bias introduced by some over-
simplification of the modelling framework, with particular ref-
erence to the type of leading vehicle. Our analyses are based 
on the observation of car-following trajectories collected in 
a large experiment involving one hundred drivers. Observed 
behaviors have been interpreted by means of several car-fol-
lowing models proposed in past. The comparison of the values 
of the parameters identified for the models (versus observed 
data) is adopted for the analyses. Moreover, directly observed 
variables (car-following speed and spacing) are adopted to 
complement and confirm the analyses. Results show that the 
greater among the sources of dispersion is the across-driver 
heterogeneity and that by taking into account such an inherent 
drivers’ dispersion of car-following behaviors it is possible to 
better identify also the effect of the modelling oversimplifica-
tions induced by not considering the type of leading vehicle.
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1 Introduction
The importance of car-following (CF) studies is widely 

recognised, as they contribute to the practical development of 
different branches of traffic engineering. Early developments 
were aimed to the microscopic simulation of traffic flows; 
well-known contributions in this field come from the popular 
GHR model (Gazis, et al., 1959) and from the Gipps’ modelling 
framework (Gipps, 1981). Since CF applies to the interaction 
of nearby vehicles in the same lane, it has a significant role in 
traffic safety studies too (Cheol and Taejin, 2010). Recently, CF 
studies have gained a renewed attention as they can be adopted 
in order to interpreter and/or mimic the drivers’ behaviour for 
Advanced Driving Assistance Systems (ADAS), thus allowing 
for a better (more human-like) interaction in some driving auto-
mation solution (Bifulco et al., 2013a). 

However, the drivers’ behaviour in CF can be easily observed 
to be heterogeneous and a proper analysis (and comprehension) 
of the sources of this heterogeneity is a key factor for further 
development in ADAS and/or for enhancing the interaction 
between human driving logics and automatic-driving systems 
(Csiszar and Foldes, 2015).

An inherent source of heterogeneity depends on the disper-
sion of behaviours across-drivers, as different drivers react 
differently to similar stimuli. Moreover, the same driver can 
exhibit different reactions (to the same stimuli) in differ-
ent driving sessions or even within the same driving session 
(within-driver heterogeneity). Finally, some of the (apparent) 
heterogeneity can be explained by some variables often not 
explicitly considered in CF models (modelling oversimplifica-
tion), such as the type of leading vehicle.

This paper aims at investigating within-driver and across-
driver heterogeneity, as well as the impact of oversimplification. 
Section 2 describes the experiment in which CF observations 
have been collected, as well as the elaboration of data required 
for the analyses. Section 3 details the methodology for the anal-
yses, as well as the adopted modelling background on which 
some of the analyses are based. In Section 4 the main results are 
presented, while in Section 5 these results are discussed.
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2 Data collection and processing
To achieve the paper’s purposes, it is needed to observe the 

behavior of several drivers (in order to understand to role of the 
across-drivers heterogeneity), for a relevant duration of time 
(in order to observe within-driver dispersion), in real-world 
situations and with different types of leading vehicles. To this 
end, the most appropriate experimental tool is an Instrumented 
Vehicle (IV). The IV has been equipped at the University of 
Naples Federico II. Thanks to 2 TRW Autocruise AC20 radars, 
the IV allows for collecting, among others, data about the rela-
tive distance and the relative speed with respect to up to 4 front 
and/or 4 rear vehicles. In particular, radars can detect and track 
a target at a distance from 2 to 150 meters and at a speed from 
10 to 200 Km/h. In order to analyse the reactions of the same 
driver as the leading vehicle changes, the IV is employed in 
the so-called active mode, that is data from the front radar are 
recorded. Some ego-data are recorded too, mainly the cruis-
ing speed of the IV itself. All data are collected at a 10 Hz 
frequency, synchronized and recorded on-board. Raw data are 
processed off-line in order to smooth the signals and to avoid 
spikes and bias. They are subject to a Kalman filter procedure, 
as described in (Bifulco, et al., 2011); this ensures consist-
ent profiles of cruising speed, acceleration, relative speed and 
spacing with respect to the leading vehicle. Data are comple-
mented with videos taken by a front-oriented camera, aimed to 
record the type of the leading vehicle.

The dataset was collected within the Italian research pro-
ject DRIVEIN2 (DRIVEr monitoring: technologies, method-
ologies, and IN-vehicle INnovative systems); details about the 
DriveIn2 project can be found in (Bifulco et al., 2012; Bifulco 
et al., 2015). The experimental test-site as a whole is a large 
circular ring with a total length of about 80 Km. In particular 
a long section (16 Km) of this ring has one-lane per direction, 
a posted speed limit of 60 Km/h and overtaking isn’t allowed. 
Given the characteristics of the test-site, CF conditions are 
expected to frequently occur, thus the segment has been adopted 
as the reference test-bed for our analyses. It is also worth not-
ing that on the selected road-segment CF trajectories are more 
likely to be associated with heavy goods vehicles (HGV) as 
leading vehicle. This is due to both the not allowed overtak-
ing and the presence of several factories in the zone (and so 
an high incidence of HGVs). The IV was driven on the test-
site by 100 participants, selected in order to match as closely 
as possible the population of Italian drivers (see first row of 
Table 1 below). All driving sessions referred to medium-con-
gestion traffic conditions and stop-and-go phenomena were not 
observed. Moreover, all observations referred to good weather 
and day light conditions. Indeed, different environmental (and 
traffic) conditions can influence the car-following behaviour. 
However, the aim of the paper is to elaborate on within-driver 
and across-drivers heterogeneity, as well as on the influence of 
the type of leading vehicle on the car-following behaviour. In 

this context, the environmental and traffic conditions can be 
considered as a bias; thus we have tried to keep them constant 
during the experiment. 

Collected data have been pre-processed according to the 
video taken by the front camera. As a result of a manually-made 
visual analysis, each trajectory observed for each driver has 
been split in several segments. Each segment is characterized 
by a unique leading vehicle and by uninterrupted CF conditions. 
As a result, non-CF conditions are discarded and unique vehi-
cle types are associated to segments. Considered vehicle types 
have been: motorbikes, cars, light commercial vehicles, busses, 
HGV. The relative incidence of cars and HGVs is dominant as 
they cover respectively 70 % and 18 % of the sample. Thus, for 
sake of simplicity, the only considered segments in our analy-
ses are cars and HGVs. This means that after the visual inspec-
tion some driving sessions are discarded from the dataset as 
being not associated (in the considered road-segment) with any 
CF condition involving cars or HGVs. The composition of the 
drivers’ population after the visual inspection is reported in the 
second row of Table 1. In total, 84 drivers have been retained in 
the dataset, of these 54 % were male, 21 % young (less than 25 
years old) and 15 % elderly (more than 65 years old).

Table 1 Composition of the drivers’ population

TOT Male
Young
(<25 y.o.)

Elderly
(>65 y.o.)

Before visual inspection 100 57 % 20 % 20 %

After visual inspection 84 54 % 21 % 15 %

Identified segments have been 263, for a total duration of 
about 419 minutes of observation. The resulting mean duration 
of each segment is about 96 seconds. We will employ these 
segments for both direct and indirect analyses (based in the 
identification of modelling parameters). In previous studies 
(e.g. Bifulco et al., 2013a) we have shown that in some cases 
even 30 seconds are enough to identify behavioural parameters 
of car-following. The share between cars and HGVs of consid-
ered segments is 64 % (for 36 % of the segments the leading 
vehicle is an HGV). In terms of duration, the segments with a 
car as the leading vehicle stand for 76 % of the total. The previ-
ous figures are summarised in Table 2. In order to investigate 
behaviour heterogeneity and modelling oversimplification, it 
is convenient to identify equilibrium car-following conditions. 
This allows for eliminating from the analyses the bias due to 
transients in leader-follower adjustment of trajectories or in 
transition from different leading vehicles. The definition of CF 
equilibrium and the method adopted to identify these condi-
tions are described in Section 3.1 below. As CF equilibria are 
the main condition in which we analyse drivers’ behaviours, 
the mechanical characteristics (e.g. the braking system) and the 
driving style of the leading vehicle should have a negligible 
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impact, as the leader generally drives at a constant speed, a 
part random fluctuation that can be incorporated in the experi-
mental bias. Given a CF segment, each sub-trajectory of the 
segment with uniform and uninterrupted equilibrium condi-
tion is defined as a clip. The application of the methodology to 
the collected dataset gives rise to the figures shown in Table 3. 
Note that the mean number of clips identified in each section 
is similar in the two sub-datasets (cars and HSGs), while the 
duration of HGV clips is about 20 % higher.

Table 2 Composition of the car-following segments

Car-following segments

TOT
Time 
[min]

Num. of records
Leader = Car

% of Segments % of Time

263 418.85 251310 64 % 76 %

3 Methodology and theoretical background
In order to investigate the drivers’ heterogeneity of CF 

behaviours and the effects of modelling oversimplification, 
we analyse observed behaviours by adopting two different 
approaches, both based on the dataset described in Section 2. 
The first approach analyses different CF clips by directly look-
ing at observed measures (spacing and relative speed at equi-
librium) and searching for differences and similarities in clips 
of different drivers (across-drivers heterogeneity), clips of the 
same driver (within-driver heterogeneity), and clips with differ-
ent leading vehicles (modelling oversimplification). The second 
approach consists of identifying the parameters of a CF model 
for different clips and searching for differences and similarities 
with reference to the identified values. In order to enhance the 
robustness of the model-based analyses, the approach is per-
formed three times, with reference to three different models.

3.1 Car-following equilibrium: definition and 
identification

Equilibrium CF conditions are characterized by a null rela-
tive speed and a constant relative distance (equilibrium spac-
ing) between the leading and the following vehicle. Actually, 
as well known from experimental evidences and from psycho-
physiological CF models, the follower oscillates around the 
equilibrium conditions by continuously adjusting the relative 

speed and the relative distance. The result of these oscillations 
are, once plot in the plane relative speed vs. relative distance 
(spacing), the well-known CF spirals. One example of car-fol-
lowing spiral is shown in Fig. 1, where the equilibrium point is 
the center of the oscillation (point A).

Fig. 1 Car-following spiral (example)

Actually, due to changes in the leader’s speed or because of 
other reasons, more than an equilibrium point can be observed 
in a CF segment (see Fig. 2). Several equilibria have to be duly 
identified in order to ensure a proper identification of the equi-
librium spacing and of the cruising speed at which the equilib-
rium spacing holds; similarly, the parameters of the CF models 
we will employ have to be estimated in correspondence to equi-
librium conditions.
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Fig. 2 Multipla car-following equilibria and clips

Table 3 Car-following clips

Segments Clips Clips per segment
Time [s]

Driving Sessions Clips per driving session
Mean Std. Dev.

Car 168 378 2.25 44.48 35.6

84 7.14HGV 95 222 2.40 54.8 39.1

TOT 263 600 2.28 46.9 36.6
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As anticipated in Section 2, an uniform and uninterrupted 
CF trajectory in equilibrium conditions (oscillating around 
the same equilibrium point) is here called clip. The procedure 
adopted for selecting clips and identifying CF equilibria is 
based on a machine learning approach, that allows for auto-
mating the process, and for applying it to our large amount of 
observed data.

For each CF segment a vector is defined at each time instant 
at which the trajectories have been sampled (with 10 Hz sam-
pling rate). The vector consists of two components: the spac-
ing and the follower’s cruising speed, as different equilibria 
hold at different cruising speeds. Moreover, the time elapsed 
from the beginning of the segment is associated with the two 
components of the vector in order to define a time-series, as the 
clip is an uninterrupted part of the segment. A k-means cluster-
ing algorithm has been applied to these time-series; it aims to 
divide the CF section into k clusters in which each observation 
belongs to the cluster with the nearest mean, that represents 
the centroid of the cluster. In practice, given the representation 
of the CF segment as a time series of n observations (x1, x2, …, 
xn), where each observation is a two-dimensional real vector, 
the k-means clustering aims to partition them into k (≤n) sets 
S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 
squares. In other words, the objective is to find:

min
s

i

k

x S
i

i

x
= ∈
∑∑ −
1

2µ

Where μi is the mean of the points in Si.
In the clustering technique the number of clusters k has to 

be a-priori defined, thus a criterion is essential in order to ver-
ify that it has been satisfactorily chosen. In our case the gap-
statistic suggested by (Tibshirani, et al., 2001) has been used. 
The statistic, given the clusters obtained after having fixed their 
number, measures the difference of within-cluster dispersion 
with respect to a reference distribution obtained from the non-
clustered observations. The statistic can be used in an auto-
matic process as follows:
•	 perform several clustering, varying the tentative number 

of clusters (k) from 1 to a predefined max number (nc ); 
for each trial the clusters are constrained to be composed 
by adjacent observation times;

•	 the gap-statistic is evaluated for each of the clustering 
trials;

•	 the actual number of clusters correspond to the trial with 
maximum value of the gap-statistic.

In our procedure the maximum number of clusters nc has 
been fixed to 4. It is the best trade-off between the required 
computational burden of the procedure and the most likely 
value, as estimated from previous experiences on a pilot data-
set, that have suggested the number of equilibria in a single CF 
segment is less than 4 with a 92 % probability.

The outcome of our procedure is comparable to the one that 
can be obtained adopting a simpler one, based on the exploita-
tion of some peculiar properties of the CF spirals (see (Pariota, 
2013) for details). However, the gap-statistics approach has 
been here chosen as it allow for associating both an equilibrium 
spacing and an equilibrium speed to each clip, as well as for 
easily ensuring the clips are composed by adjacent samples of 
the CF trajectory and for easily automatizing the identification 
procedure for large datasets.

3.2 Adopted car-following models for parametric 
description of behaviors

In this section some theoretical background on car-follow-
ing is quickly recalled, as well as three different car-following 
models developed by the authors in previous works, The iden-
tification of the parameters of these models will be adopted in 
order to reinforce the analyses directly made with respect to 
the equilibrium spacing and speed. The main theoretical frame-
work to which we refer is the so-called psycho-physiological 
approach, as framed within the Action Point (AP) theory, 
initially developed by (Barbosa, 1961; Todosoiev, 1963) and 
(Wiedemann, 1974). This approach is based on the Michael’s 
theory (Michaels, 1963), represented in Fig. 3.

Fig. 3 Michael’s theory

The stimulus to which drivers respond is the angular velocity 
(dϑ/dt) at which the apparent size of the vehicle ahead changes, 
where the apparent size is defined as the visual angle (ϑ) sub-
tended by the observed leading vehicle, that is proportional to 
the current relative speed (∆v), the spacing (∆x), and the size 
(w) of the leader:

d
dt

w v
x

t

t

θ
= −

( )
∆

∆
2

As evident from the Fig. 3, the stimulus changes (ceteris 
paribus) according to the size of the leader (w). This justifies the 
potential effect of the type of leading vehicle on the car-follow-
ing behavior and suggests that some modelling oversimplifica-
tion can be induced if this phenomenon is not explicitly consid-
ered. Of course, the relevance of the oversimplification (if any) 
has to be properly estimated. For instance, some researchers  
(Parker, 1996; Brackstone, et al., 2009) found that the spacing 
at which drivers tend to follow HGVs is smaller than that for 
cars, while some others (Aghabayk et al., 2013) observed larger 
headways and higher reaction time while following HGVs.

(1)

(2)
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Starting from the AP theory, we have proposed in past works 
(Bifulco et al., 2013b; Pariota and Bifulco, 2015) a specific 
interpretation based on our original concept of car-following 
waves. Indeed, if a typical car-following spiral is plot in a differ-
ent plane, that is with respect to the rate between relative speed 
and spacing (-DV/DX), some waves are described (Fig. 4). The 
extremes of these waves correspond to the opening and closing 
(velocity-based) action points (OPDV and CLDV) of the Wiede-
mann’s theory (Wiedemann, 1974), and they can be found to be 
located on a segment. Different drivers (and clips) can exhibit 
different segments that correspond to different behaviors. These 
behaviours correspond to different values of the model param-
eters, in particular we refer to the intercept (a1 always very close 
to zero) and the slope (a2 ) of the segment. The slope (a2 ) is 
expected to be different if the model is calibrated with respect 
to different types of leading vehicles; moreover, once identified/
calibrated against different observed CF segments or clips, the 
dispersion of the parameter corresponds to the heterogeneity of 
the drivers’ (and clips) behaviors.

Fig. 4 Car-following waves and action points

The second parametric model is a simple time-continuous 
linear state-space formulation of CF proposed in Pariota et al. 
(2015). It is developed for conditions close to the equilibrium; 
even if it shows to be also reasonably applicable far from 
the equilibrium. The model is based on a Taylor’s linear 
expansion of the (generally non-linear) car-following dynamic 
process, written at equilibrium conditions. Given the Taylor’s 
approach, the equation of the process is not needed, while it 
is needed to know the partial derivatives of the process with 
respect to the independent variables, that are assumed to be the 
spacing, the relative speed and the cruising speed. Some mild 
approximation allows to neglect the derivative with respect to 
the cruising speed and to show that the remaining derivatives 
to be known can be treated as the parameters (ω1 and ω2) of 
the behavioral model to be identified. Once these parameters 
are identified, the linearized model can be put in a state-space 
form and can be shown (Pariota et al., 2015) to fit well the 
observed data, even far from the equilibrium conditions, thus 
suggesting that the CF phenomenon is not too much different 
from its linearization.

The third parametric model is based on a linear formulation 
too (Bifulco et al, 2013a). It is directly derived from a time-dis-
crete stimulus-response approach and it is specifically devel-
oped for ADAS-oriented solutions. Once properly calibrated, 
it has been shown to be mimic of real car-following behav-
iors, as it is aimed at enabling an human-like control logic for 
adaptive cruise control (ACC) systems (Bifulco et al., 2008). 
The time-discrete linear model uses a polynomial formula to 
relate the instantaneous speeds of the leader and of the follower 
(and their relative spacing) with the target spacing the follower 
applies for the next simulation time-step. The calibration of 
the model is carried out by adopting the recursive least squares 
(RLS) algorithm, as described by (Haykin, 2001). Calibration 
is separately applied to different drivers and, for each driver, to 
different clips. This allows for the disaggregated identification 
of the coefficient of the polynomial formula (vector β). These 
coefficients are assumed to include the behavioral characteris-
tics of any given driver (and clip) and can be compared in order 
to check for similarities and differences.

4 Analyses and results
One of our first analyses is oriented to understand if the type 

of vehicle ahead influences the driving behavior in car-follow-
ing conditions. Figure 5 shows all observed equilibrium con-
ditions; these are plotted considering both the cruising speeds 
of the vehicles and the inter-vehicular spacing. Actually, the 
cruising speed of the follower is shown, but in equilibrium con-
ditions the speed of the leader and the one of the follower are 
very similar. It can be seen in Figure 5 that the point representa-
tive of HGVs as leading vehicles are around 18% of the ones 
that represent cars. This is consistent with the expected compo-
sition of the traffic streams in the study area.

Fig. 5 Scatter plot of the equilibrium spacing vs. the cruising speed

Results show, as expected, that the spacing increases accord-
ing to the cruising speed. This phenomenon is common to both 
HGVs and cars. However, data seem to be very dispersed and 
the dispersion seems to increase as the cruising speed increases.

The same analyses can be done with reference to the time 
headway. The results are shown in Fig. 6 and are similar to the 
ones in Fig. 5. 
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Fig. 6 Scatter plot of the equilibrium headway vs. the cruising speed

The distribution of observed cruising speeds (in equilibrium 
conditions) is adopted in order to identify classes for a further, 
more detailed, analysis. As it can be seen from Fig. 7, The 
sentence allow for considering the great part of the observed 
(equilibrium) cruising speeds. As the observed cruising speeds 
are not drastically different between HGVs and cars (see Fig. 7 
again), the adopted classes are the same for the two types of 
leading vehicles.

Fig. 7 Distribution of cruising speeds in the dataset

As 12.5 m/s corresponds to 45 km/h and 21.5 m/s to 77 
Km/h, the three adopted classes for the cruising speed are 
consistent with the traffic characteristics of the national road 
where the observations are collected. All clips where the equi-
librium cruising speed is outside of the previous range are dis-
carded from the analyses. The incidence of the discarded clips 
is 13 % of the total.

The heterogeneity observed in Fig. 5 and 6 accounts for 
both the within-driver (different clips of the same driver) and 
across-drivers (clips of different drivers) phenomena. Table 4 
below differentiates the magnitude of the within-driver and the 
across-drivers dispersions; E[σw] is the average (over all driv-
ers) of the standard deviations of the equilibrium spacing for all 
clips of the given driver, it includes the heterogeneity possibly 
due to the different type of leading vehicle. Similarly, E[cvw] 
is the average of the coefficient of variation corresponding to 
E[σw]. The parameter σa is the standard deviation (and cva the 

coefficient of variation) computed over all the clips and all the 
drivers; it measures the across-drivers heterogeneity and, given 
how it is defined, includes the within-driver heterogeneity.

Table 4 Within-driver and across-drivers heterogenity

Dataset
E[σw]

Within-driver Across-Drivers

E[cvw] σa cva

Sp
ac

in
g All 9.47 0.33 15.55 0.58

Car clips 8.08 0.30 15.20 0.57

HGV clips 4.94 0.20 10.78 0.44

H
ea

dw
ay

All 0.49 0.31 0.86 0.57

Car clips 0.44 0.29 0.88 0.58

HGV clips 0.25 0.17 0.57 0.41

Note (first row of Table 4) that the magnitude of the across-
drivers heterogeneity is greater (about 1.6 times) than the 
within-driver one. This is even more remarkable if we consider 
that the within-driver dispersion is computed for any single 
driver (before to be averaged over drivers), thus by using much 
less observations (per driver) than the across-drivers disper-
sion. Table 4 also shows that the heterogeneity can be reduced 
if clips with different leading vehicle are considered (rows 2 
and 3); this is more evident for the within-driver heterogeneity 
than for the across-drivers one. The previous means that the 
across-drivers heterogeneity can induce a remarkable bias to 
the analysis of the influence of the type of leading vehicle, and 
that the more convenient way to analyze the influence of the 
leading vehicle is with reference to the within-driver heteroge-
neity. It is also worth noting that comparing rows 2 and 3 with 
reference to the last two columns of Table 4, the evidence is 
suggested that the behavior of different drivers is more similar 
in case the leading vehicle, while is more dispersed if the lead-
ing vehicle is a car.

Note that analyzing the phenomenon in terms of spacing or 
headway is quite equivalent. This enables us to look to just the 
spacing in the follow of the paper.

It has to be noted that, unfortunately, the typical number of 
clips for each driver is small and often the same driver does 
not exhibit both cars and HGVs as leading vehicles of his/her 
clips. This forces to apply all the analyses hereafter carried out 
to the dataset as a whole (not distinguishing per driver, even if 
distinction per type of leading vehicle is considered); however, 
the bias induced by the across-drivers heterogeneity has to be 
duly taken into account in discussing the obtained results.

According to Table 4, clips have been considered for differ-
ent ranges of the equilibrium speed in order to build empiri-
cal probability density functions (PDF); these have been built 
with reference to separately considered clips for cars or HGVs 
and also for the dataset as a whole (not distinguishing the type 
of leading vehicle). The empirical distributions have been 
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tested to fit a lognormal random variable. The lognormal dis-
tributions fit well the observed data, as verified by applying 
two nonparametric tests, the Kolmogorov-Smirnov and the 
Chi-square; results have been reported in Table 5, where it can 
be seen that p-values all greater than 0.05.

Table 5 Testing the hypotheses on the appropriateness of the lognormal 
distributions for the fitting of the equilibrium points in the different speed classes 

Dataset Speed Class

Kolmogorov-
Smirnov

Chi-square

p-value p-value

Car

I ([12.5, 15.5] m/s) 0.44 0.18

II ([15.5, 18.5] m/s) 0.71 0.87

III ([18.5, 21.5] m/s) 0.68 0.43

HGV

I ([12.5, 15.5] m/s) 0.61 0.60

II ([15.5, 18.5] m/s) 0.89 0.60

III ([18.5, 21.5] m/s) 0.86 0.53

The estimated parameters (k1 and k2) of the lognormal varia-
ble are shown in Table 6 for all combinations of leading vehicle 
and speed class, the corresponding expected value (E), stand-
ard deviation (STD) and coefficient of variation (CV) for the 
equilibrium spacing are reported too. Table 6 also shows that 
the values for the k2 coefficient are different if cars and HGVs 
are separately considered, the same applies to the expected 
value of the spacing. Moreover, in particular for the first class 
of speed (the lower one), the standard deviation for HGVs is 
remarkably lower than for cars; thus, it seems that the hetero-
geneity can be partially controlled by avoiding modelling over-
simplification and by explicitly taking into account the type of 
leading vehicle. The previous hypothesis is statistically tested 
by checking if the null hypothesis holds that the two sample are 
from the same random distribution. The applied test is the two-
sample Kolmogorov-Smirnov. Results are reported in Table 7 
below, and show that the null hypothesis is never rejected.

The two datasets (car and HGV) have been also compared 
via the behavioral models introduced in Section 3.2. For what 
concerns the state-space model, the process of identification 
was carried out using the Matlab-System Identification Tool-
box. With respect to the stimulus-response model and to the one 
based on waves, a good fitting of the data is ensured by analysis 
of the r-square statistics; they have not been reported in Table 7 
because for all the clips the values assumed were between 0.85 
and 1, without any relevant difference between the datasets.

The values assumed by parameters in the two datasets (car 
and HGV) are reported in Table 8; provided that they have 
been evaluated for each drivers and for each clip, the statistical 
distribution of the identified parameters is described in terms 
of the 25th, 50th, and 75th percentile.

Table 6 Parameters estimated and their statistics

Dataset
Speed 
Class

Lognormal parameters Spacing

k1 k2 E STD CV1

Car

I 2.77 0.45 17.65 8.33 0.47

II 3.08 0.47 24.33 12.21 0.50

III 3.36 0.47 32.10 15.98 0.50

HGV

I 2.72 0.27 15.77 4.29 0.27

II 3.05 0.46 23.58 11.47 0.49

III 3.34 0.32 29.60 9.79 0.33

All

I 2.75 0.40 17.00 7.01 0.41

II 3.07 0.47 24.18 12.05 0.50

III 3.35 0.44 31.57 14.72 0.47

Table 7 Testing the hypotheses on the similarity of the distributions in the 
different classes for speed at car-following equilibrium points

Speed Class Kolmogorov-Smirnov 

I 0.76

II 0.78

III 0.34

Table 8 Distribution of behavioural parameters

M
od

el

Pa
ra

m
et

er Dataset

Car HGV

25th 50th 75th 25th 50th 75th

St
at

e 
sp

ac
e ω1 0.037 0.085 0.291 0.045 0.105 0.450

ω2 0.29 0.56 1.56 0.40 0.81 2.41

St
im

ul
us

R
es

po
ns

e

β0 -0.324 0.414 1.865 -0.113 0.713 2.869

β1 -0.058 -0.023 -0.008 -0.062 -0.023 -0.006

β2 0.494 0.579 0.619 0.455 0.554 0.599

β3 -0.062 0.005 0.065 -0.118 -0.017 0.074

W
av

es a1 -0.0010 -0.0002 0.0006 -0.0007 -0.0001 0.0007

a2 -0.059 -0.042 -0.030 -0.059 -0.042 -0.032

With reference to the state-space model, positive values 
confirm the rational driving behavior hypothesis (Wilson, 
2008). In the stimulus-response model, parameters β1 and β3 
assume quite low value, thus the main stimulus is the one 
associated with β2, the relative speed. In the waves-based 
model the parameter a1 should assume a zero value and this 
is confirmed for both the datasets. For all behavioral models, 
the values assumed by the parameters in the two datasets (car 
and HGV) are similar, this is particular evident for the waves-
based model where the only relevant parameter a2 is almost 
independent on the dataset (car or HGV).

The same distributions are reported in following figures 
from 8 to 10 for the most relevant of the previous parameters.
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5 Discussion 
Results in Tables 5 and 6 show that actually the lognormal 

distributions of spacing fit well the observed data, and confirm 
finding of previous studies. Indeed Greenberg (1966) in his 
early paper introduced the hypothesis of lognormal distribu-
tion, even if with reference to the headway (a quantity is related 
to spacing); this hypothesis has had various confirmation in fol-
lowing years (Piao and McDonald, 2003) up to the recent paper 
of Jiang and Lu (2015). 

Table 5 shows that average values of the equilibrium spac-
ing increase with the speed. This result is somewhat intuitive, 
and also confirms references from literature. The dispersion of 
the equilibrium spacing increases with the speed, showing the 
car-following behaviors are less heterogeneous at lower speed 
value; this result has been confirmed in Jiang and Lu (2015) 
too, with reference to a sample composed by Chinese drivers.

Previous considerations hold if the dataset of all clips is 
split in two by considering the type of leading vehicle (cars 
and HGVs). With reference to Table 5, a systematic effect can 

be observed of the type of leading vehicles toward the values 
of the parameters of the distributions, moreover the disper-
sion decreases if equilibrium spacing is separately considered 
for different classes of leading vehicle. Our results about the 
influence of the type of the leading vehicle seem to partially 
agree with those in Parker (1996) and Brackstone et al. (2009). 
Indeed, also in our dataset the average equilibrium spacing at 
which drivers tend to follow HGVs is smaller than for cars, for 
all the speed classes.

It is worth considering that our results about the impact of the 
class of leading vehicle are not statistically significant (Table 6), 
as also indicated by the distribution of behavioral parameters 
(Table 7), which are fully comparable in the two datasets, with 
the partial exception of the parameters ω2 and β0 , that are the 
most different across the two datasets. They exhibit a not negli-
gible systematic difference, and the values related to the HGVs 
are systematically greater than the ones related to the cars.

Overall speaking, the observed heterogeneity seems to be 
not associable with statistical significance to the type of leading 

Fig. 8 Parameters ω1 and ω2, comparison for car and HGV Fig. 9 Parameters β0 and β2, comparison for car and HGV

Fig. 10 Parameter a2, comparison for car and HGV
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vehicle. However, this result could have been effected by the 
different nature of the heterogeneity. The within-driver one 
should be more sensitive to the type of leading vehicle, but 
it is dominated (Table 4) by the across-drivers heterogeneity 
(that also includes the dispersion due to the type of leading 
vehicle). Unfortunately, given the size of our sample, we are 
not able to accurately identify the within-driver heterogene-
ity for different classes of speed. It should also be noted that 
the driver behaviour (i.e., aggressive driving) and performance 
(i.e., safety skills) could differ, sometimes substantially, across 
cultures/countries. The results obtained in this study cannot be 
extended to other countries without further ad-hoc studies.

Finally, it’s worth noting about the results extension that the 
study were carried out in specific experimental condition: extra-
urban road context, medium-congestion traffic, middle class 
vehicle with manual transmission, daylight and good weather.

6 Conclusions
The paper analyzed within-driver and across-driver hetero-

geneity, as well as the impact of oversimplification, with par-
ticular reference to type of leading vehicle, in car-following   
conditions.

The results of study confirm finding of previous study 
such as that the lognormal distributions of spacing fit well the 
observed car-following data, average values of the equilibrium 
spacing increase with the speed and the average equilibrium 
spacing at which drivers tend to follow HGVs is smaller than 
for cars. Regarding the type of leading vehicle, a systematic 
effect on observed heterogeneity is evident but, is not statisti-
cally significant.

In any case a more general conclusion can be drawn, when a 
car-following model is adopted for (microscopic) traffic simu-
lation it is likely that the overall properties of the traffic stream 
as a whole are respected also if the effect of the type of the 
leading vehicle is not taken into account, as the across-drivers 
dispersion prevails; of course this result concerns the car-fol-
lowing model parameters, because the presence of a significant 
percentage of HGVs affects the traffic flow for the difference 
in the acceleration/deceleration rates of the two vehicle classes. 
On the other hand, when the behavior of a single driver has to 
be interpreted or integrated by, for instance, an advanced driv-
ing assistance system, the within-driver dispersion has to be 
taken into account and controlled from a modelling point of 
view. This can be supported by explicitly considering the type 
of leading vehicle. An extension of this work will be carried 
out analyzing also car-following behaviors for the motorways 
observed within the DRIVEIN2 project (Bifulco, et al., 2012), 
in such a way to explore also the effect of different contests on 
the car-following behaviors.
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