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Abstract
This work tackles the problem of controlling operations at an 
automated container terminal. In the context of large supply 
chains, there is a growing trend for increasing productivity 
and economic efficiency. New optimization models and algo-
rithms are provided for scheduling and routing equipment that 
is moving containers in a quay area, loading/unloading ships, 
transporting them via Automated Guided Vehicles (AGVs) to 
Automated Stacking Cranes (ASCs), organizing them in stacks. 
In contrast with the majority of the approaches in the related 
literature, this work tackles two dynamics of the system, a dis-
crete dynamic, characteristic of the maximization of opera-
tions efficiency, by assigning the best AGV and operation time 
to a set of containers, and a continuous dynamic of the AGV 
that moves in a geographically limited area. As an assump-
tion, AGVs can follow free range trajectories that minimize 
the error of the target time and increase the responsiveness of 
the system. A novel solution framework is proposed in order to 
tackle the two system dynamics. Various metaheuristic algo-
rithms are tested to solve the problem in a near-optimal way. 
Computational experiments are presented in order to show 
the feasibility of the proposed framework on a practical case 
study, and to assess the performance of advanced scheduling 
and routing algorithms on numerous system settings.

Keywords
container terminal operations, scheduling, free-ranging rout-
ing, trajectory planning, metaheuristics

1 Introduction
Global freight transport is a key characteristic that makes 

our society possible, and has faced an enormous growth over 
the last decades, due to international commercial trade. Over 
60 % of worldwide deep-sea cargo is currently transported by 
containers. A container terminal is the transport hub in freight 
transport and represents the interface between the modalities 
of vessel, barge, train and truck, providing flexibility and scal-
ability for covering different geographical areas. Therefore, the 
performance of container terminals influences freight transport 
significantly. The increasing amount of containers that arrive 
and depart with container ships causes much pressure for ter-
minal operators. In 2000, the capacity of a container vessel was 
typically 6,000-8,000 TEU; in 2013, the number of containers 
carried by a container vessel can be up to 18,000 TEU. The 
turnaround time of a container vessel may therefore increase 
significantly. Hence, the handling capacity of a container ter-
minal must be maximized to reduce the turnaround time of a 
container vessel.

For the improvement of the performance at terminals, auto-
mated container terminals are built, since they can increase 
the productivity and reduce wage costs in a cost-efficient way. 
For a general overview of the research questions associated 
to automated container terminals, the reader is referred to 
Carlo et al. (2014). The operations of the automated container 
terminals are complex, in particular when more autonomous 
vehicles are developed (e.g., Automated Guided Vehicles 
(AGVs), that can be further moving in a free-ranging fash-
ion). Therefore, improving the performance of automated con-
tainer terminals is an active research and practical challenge, 
as is shown in recent literature reviews (Bierwirth and Meisel, 
2010; Carlo et al., 2014; Stahlbock and Voss, 2008; Steenken 
et al., 2004; Vis and de Koster, 2003). Integrated control of all 
activities in container terminals is becoming more and more 
important (van Zijverden and Negenborn, 2012).

Models dealing with the problem of increasing efficiency 
of automated terminal operations can be categorized into dif-
ferent main streams, depending on where the main focus and 
constraints of the operations are. A stream of research is about 
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discrete event scheduling and routing, i.e., mathematical mod-
els which assume equipment (cranes, AGV, etc) operating 
according to the plans, and model conflict and synchronization 
of equipment in a discrete way. The scheduling and routing 
problem is a key problem in this context and can be efficiently 
represented via discrete dynamics of the operations at the 
whole terminal. A common solution approach is based on mod-
eling the scheduling and routing problem as a hybrid flow shop 
model with flexible routing. However, this results in a math-
ematical formulation of the problem with several integer and/or 
binary variables that is very difficult to be solved in real-time. 
For such large-scale mathematical programming problems, one 
open point is to investigate the extent at which a good solution 
can be found by standard off-the-shelf optimization software in 
a short time that would allow usage in real operations. To this 
end, an emerging trend is the usage of metaheuristics (e.g., tabu 
search, ant colony or variable neighborhood search), which can 
provide good solution in applicable time (Chen et al., 2007; 
Expósito-Izquierdo et al., 2011; Lee et al., 2005).

A drawback relates to the amount of assumptions that math-
ematical optimization approaches need to consider in order to 
deliver near-optimal solutions quickly, to the point that some 
operations that have inherently a continuous dynamics can 
hardly be considered. This includes for instance collision avoid-
ance (to ensure safe operations), energy efficiency, and free-
ranging routing of AGV (to decrease the total distance trave-
led). Another main stream of research thus tackles directly those 
issues, related to the continuous trajectory and autonomous safe 
movements of AGV. Typically, this is a trajectory planning 
problem, that can be solved by non-linear optimization tech-
niques, and at the expense of looking for near-optimal solu-
tions to the combinatorial scheduling and routing problem. An 
example here is the work of Duinkerken et al. (2006). A major 
drawback of this second stream of research is the quality of the 
schedules, which are mostly simulated based on dispatching 
rules, or optimized to a very limited extent. As a result, there 
is no knowledge on the performance improvement achievable 
when fixing the value of ordering and routing variables.

Recently, hybrid models have been used to address the 
contrast between those two streams of research in (Xin et al., 
2013a; 2013b; 2014a; 2014b). Such models merge the advan-
tages of discrete-dynamics models (typically, highly optimized 
scheduling solution), and continuous-dynamics models (i.e., 
able to model properly reallife dynamics, speed and trajecto-
ries of the vehicles). In line with this stream of research, the 
contribution of this paper goes along the idea of increasing the 
accuracy of existing hybrid models for automated container 
terminal operations and developing realtime algorithms for 
near-optimal scheduling and routing.

We now summarize the main contributions of this paper:
•	 The large-scale scheduling and routing problem of inter-

acting equipment in an automated container terminal with 

a predetermined fixed dynamic is modeled as a hybrid 
flow shop problem, as proposed in (Xin et al., 2014a). 
This hybrid flow shop can be formally described as FH3 
(D, Pn , D ) | blocking; seq-dep setup | Cmax  according to 
the typical three-field Graham’s notation (see Ruiz and 
Vázquez-Rodríguez (2010) for an overview of the prob-
lem and the classification). Three stages are present, out of 
which the second stage has n parallel identical machines 
(P), while the first and the last ones have a single machine 
(D) assigned per each job. Here, every machine corre-
sponds to a piece of equipment, i.e. a vehicle or a crane, 
while every job corresponds to a container moving in the 
container terminal. The objective is the makespan mini-
mization. All machines are blocking (i.e. they can pro-
cess at most one job at a time (Hall and Sriskandarajah, 
1996)), and the operations on the second stage have 
sequence dependent setup times This particular hybrid 
flow shop is modelled as a blocking job shop, with mul-
tiple machines, each belonging to one of the stages. Each 
job is being processed by three machines (one in each 
stage); the parallel machines of the second stage are now 
considered as routing variable, and the other two stages 
have nonparallel, assigned machines. Lately, a consistent 
stream of research on the blocking job shop considered 
the alternative graph model of Mascis and Pacciarelli 
(2002). The formulation proposed in this paper also fol-
lows the alternative graph model.

•	 We present a thorough study of multiple advanced algo-
rithmic approaches to solve the problem. Those algo-
rithms are metaheuristics (a variable neighborhood 
search and a tabu search introduced in (Corman et al., 
2010; Samà et al., 2015a; 2015b)) developed in order to 
decide the assignment of containers to the machines in 
the second stage (a routing problem). A truncated branch-
and-bound algorithm, introduced in (D’Ariano et al., 
2007), is applied to solve the scheduling problem. The 
tradeoff between computational complexity, instance 
size, solution quality is precisely assessed.

•	 The discrete dynamics solution (i.e., a scheduling and 
routing solution considering assignment of AGV to con-
tainers, and order of movements of containers) is adopted 
in a hierarchical framework, which uses them as bound-
ary values for determining the precise trajectory of AGV. 
An iterative scheme of updating the trajectory is pro-
posed, which is able to manage congestions on the AGV 
terminal areas, to deliver AGV trajectory plans according 
to free-ranging principles, and to take into account capac-
ity constraints at interchange points.

•	 The vehicle congestion resulting from the large-scale 
operations of automated, free-ranging AGVs is investi-
gated for a practical case study with parameters of real 
container terminals, considering in a detailed manner the 
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continuous dynamics of vehicles. We focus on the prob-
lem of efficiently solving traffic congestion during opera-
tions. In general, increasing the amount of AGV helps 
keeping a high throughput for the expensive quay cranes, 
but having just too many AGV available poses serious 
problems of traffic congestion, that can ultimately reduce 
throughput of the overall container terminal.

•	 The impact on capacity is evaluated by simulating opera-
tions at a large-scale automated container terminal. We 
first assess the proposed methodologies on the practical 
case study, and then perform an extensive quantitative 
analysis on a set of realistic instances, starting from the 
practical case study and varying the amount of AGVs and 
containers. The experiments on the practical case study 
show that the key performance indicators of the con-
tainer terminal can be determined and improved when 
free-ranging AGVs are employed. The experimental 
results on realistic instances confirm that metaheuristic 
approaches can successfully solve largescale instances 
(keeping a discrete-dynamic perspective) and this can be 
coupled successfully with hybrid dynamics, while off-
the-shelf commercial optimization models have troubles 
with large-scale instances. Moreover, the meta-heuristics 
used allow to compute a good quality solution quickly.

The rest of this paper is as follows. Section 2 describes the 
background of the proposed approach and the main character-
istics of the problem. Section 3 then summarizes the models 
used for representing the discrete event dynamic and continuous 
time trajectory planning, as well as the algorithms used to solve 
the combined AGV scheduling, routing and control problem. 
Section 4 reports on the experiments on the practical case study, 
and Section 5 describes performance of the approach on further 
realistic instances. The implications of the computational results 
are also discussed. Section 6 summarizes the paper contribution 
and points out further research in the direction of optimizing 
hybrid operations at large-scale automated container terminals.

2 Approach and problem description
This paper studies an automated container terminal in which 

the equipment can be controlled automatically without any 
human intervention. In an automated terminal, there are mul-
tiple quay cranes (QCs), multiple automated guided vehicles 
(AGVs) and multiple automated stacking cranes (ASCs) for 
transporting containers from a vessel to the stacking area and 
vice versa. A vessel is hereby typically considered as consisting 
of several bays. Each bay provides storage space for a number 
of rows which involves several tiers of containers. Each QC 
considers a particular bay.

In our system, the layout of the equipment is as shown in 
Fig. 1 (see for details (Xin et al., 2014a)). In a typical unload-
ing cycle, a QC picks up a container from the vessel and then 

unloads it to an AGV. The AGV moves with the container from 
the quayside to the stacking area, where a container is unloaded 
by an ASC. The ASC then transports the container to the posi-
tion in the stacking area. In a loading cycle these movements 
are reversed. We call QCs, AGVs, ASCs respectively a stage; 
all pieces of equipment in each stage are defined as machines or 
resources. Accelerations, decelerations and the heading (if appli-
cable) of the equipment have to be determined in an optimal way. 
For safety reasons, collision avoidance must be considered for 
interaction of AGVs. At the same time, the interaction of AGVs 
with other types of equipment (i.e., QCs and ASCs) is required 
for achieving a high terminal throughput. In other words, a key 
issue is determining the moments in time at which containers are 
transported from one equipment to the next.

Fig. 1 Schematic layout of equipment in an automated container terminal.

The dynamics of the equipment considered are driven by 
discrete events when a container is transferred from one equip-
ment to another. Precisely, the discrete dynamics refer to the 
logical decisions that solve (1) the problem of assigning a 
container to an AGV (i.e., which particular AGV will be used 
to transport a particular container) and (2) the relative order 
between any two operations on any equipment/machine (QCs, 
AGVs and ASCs). On the other hand, continuous dynamics 
refer to the position, the speed and the heading (if applicable) 
of the equipment used by these operations. The dynamics of 
transporting containers can therefore be represented by the 
combination of discrete-event dynamics and continuous-time 
dynamics. The vessel and the stacking area are hereby consid-
ered as boundary components that are not actively controlled.

The continuous dynamics of ASC and QC do not depend on 
the order or the operations of other equipment/machines, while 
the dynamics of AGV are more complex, as they depend on the 
interaction and possible collision with the other AGVs that are 
also moving. This collision can occur along the same path (if 
AGV all follow a predefined path along a track); at particular 
places (if a mesh routing is followed), or at any place of the 
quayside yard (in case free-ranging AGVs are used).
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Due to this strong difference of dynamics, we use the same 
approach as in (Xin et al., 2014a) to separate the key char-
acteristics of the two problems by means of a decomposition 
technique, considering the scheduling and routing problem 
part and the trajectory planning connected by a hierarchical 
architecture. The overall control architecture is schematically 
illustrated in Fig. 2.

Discrete event dynamics

Determines
 Assignment Orders Times Discrete event dynamics

Updates times

Continuous dynamics

Determines
 trajectories

Assignment
Orders

Actual Travel Time

Planned Time
for Start End

Trajectories of 
other AGVs

Makespan
Trajectories of all AGVs

Fig. 2 The hierarchical control architecture.

The discrete event dynamics delivers two key solutions, 
namely the assignment between containers and AGVs; and the 
order of containers at QCs, AGVs, ASCs. Any feasible plan 
can be used in the next steps. The discrete event dynamics also 
compute starting times of operations, which are based on the 
a priori given off-line duration for all of them. In theory, all 
operations could be completed exactly as planned without any 
delays or disturbance. In practice, however, operations might 
not happen as planned. We neglect the possibility of having 
exogenous delays (such as failures, malfunctions, temporarily 
unavailability of resources) in first instance.

In any case, the operation of AGVs might not be as planned, 
as the discrete event dynamics disregard their trajectory and 
extra time required to avoid any collision. This is driven by the 
continuous-time dynamics of each equipment. The continuous 
trajectory generation of an AGV involves collision avoidance 
with request to other AGVs and static obstacles. After receiving 
the starting time and point for performing a particular operation, 
the continuous dynamics controller of an AGV aims to compute 
the AGV movement by taking into account any obstacle. Based 
on the continuous-time dynamics and constraints for collision 
avoidance, and using a given cost function, a trajectory plan-
ning problem is formulated and solved. The obtained trajec-
tory of the AGV is used for collision-free trajectory planning of 
other AGVs. The actual completion time of the AGV determines 
whether the trajectory is operated as planned (in case it is equal 
to the planned off-line one) or not. In this latter case, the dura-
tion of operations will not correspond anymore to the off-line 
planning, and the overall schedule needs to be updated.

The updating procedure can be integrated in the hierarchical 
control in many ways. One can for instance react by changing 
order or assignment, but the interplay of the order, the assign-
ment and the trajectory makes the solution of this quite com-
plex, while not impossible in cases in which the operations are 

mutually influencing each other. Thus, the hierarchical control 
updates only the duration of operations without any change in 
order and assignment of containers. We moreover choose for a 
sequential update, i.e., one at a time the trajectory of a couple 
AGV-container is updated, and all times of operations that are 
depending on it are updated (typically, postponed). The con-
tinuous dynamics of QCs and ASCs never get updated.

Of course, the final solution might result in a sub-optimal 
solution of the overall problem. Convergence of the scheme is 
ensured by the fact that every trajectory is checked for collisions 
and updated in a single step. Thus, every trajectory can be updated 
only once, and will not be updated as a consequence of later tra-
jectory updates, in a hierarchical sequential planning fashion.

Multiple schemes for updates are still possible, depending 
on the choice of the sequence of containers to update, and/or 
the possibility to re-update to a limited extent trajectories that 
have been already planned/updated. Anyway, the final output 
of the overall problem is the collision-free trajectory of AGVs 
which addresses a performance function specified at the level 
of discrete dynamics system (e.g., makespan).

3 Mathematical models
3.1 Optimization of discrete event dynamics

For modeling and solving the large-scale scheduling and 
routing problem described by discrete dynamic operations, we 
use the alternative graph formulation of Mascis and Pacciarelli 
(2002), that is based on two sets of constraints: fixed constraints 
need to be satisfied in any solution, while alternative constraints 
are pairs of alternative constraints. Operations are the move-
ment of a container (job) by an equipment/machine on a con-
tainer terminal resource. In case of AGVs, there is a choice of 
which particular AGV can be used. This additional decision is 
modelled as a routing decision (i.e., the assignment of an AGV 
vehicle to a container). The problem variables are the following:

•	 yjr  models whether container (job)  j  uses route  r, asso-
ciated with a particular AGV vehicle.  nagv  is the amount 
of AGV, which corresponds to the routing alternatives for 
job  j. In a feasible schedule, we need to select one rout-
ing alternative r (i.e. one AGV) for each job  j. In total, 
there are  J  jobs.

•	 x(jkr,imp),(ikp,jmr)  represents the order between operations  jkr 
and  ikp, related to jobs  j  and  i  over the resource  k, 
along two possibly different routes, respectively  r  and 
p. Each route differs in the choice of a particular AGV 
chosen. Here we assume that routes are in one-to-one 
correspondence to particular AGV vehicles to perform 
the movement.

•	 tjkr  represents the starting time of operation  jkr, performed 
by the container (job)  j  on resource  k  using the route  r.

The interacting sequence of operations can be described as 
the following hybrid flow shop model with flexible routing:
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Operation  0  is a dummy operation that precedes all the 
other operations, to give a common temporal reference  t0 . 
Operation n  is a dummy operation that follows all the other 
operations, and is used to keep track of the makespan.  G  is a 
sufficiently large number. Here we define the makespan as the 
time  tn  at which the last container leaves the vessel.

The fixed constraints are associated to sequences of opera-
tions  ( jmr, jkr) ∈ Fix, corresponding to the physical movement 
of a container from the resource (machine)  k  to the resource 
m, where  r  is the choice of which particular route considered. 
Those describe naturally a chain of operations, whose duration 
is determined by the off-line planning, or by the trajectory plan-
ning module. A constraint in  Fix  is active when job  j  uses route  
r, i.e.  yjr = 1, and implies that t t wjmr ikp ikp jmr

A≥ + , . The weight 
wjmr jkr
F

_   is the minimum processing time (i.e., a minimum time 
interval) between the two consecutive operations  jmr  and  jkr.

The alternative constraints are in pairs, each of them rep-
resenting an ordering decision between two conflicting opera-
tions. Those are defined for each alternative pair  ((jkr, imp), 
(ikp, jmr)) ∈ Alt  that is associated to a pair of operations  jkr 
and  ikp  which are conflicting being on the same resource  k. 
A constraint of an alternative pair  ((jkr, imp), (ikp, jmr)) ∈ 
Alt  is active when job i uses route p, i.e.  yip = 1, and job  
j  uses route r, i.e.  yjr = 1. Regarding the two constraints of 
this alternative pair, the constraint t t wimp jkr jkr imp

A≥ + _  is active 
when x(jkr,imp),(ikp,jmr) = 0, while the constraint t t wjmr ikp ikp jmr

A≥ + ,  is 
active when  x(jkr,imp),(ikp,jmr) = 1. The weights wjkr imp

A
_  and wikp jmr

A
,  

are the minimum setup times between the conflicting opera-
tions. This time interval depends on a variety of factors, includ-
ing the safety zone around an AGV, the movement back and 
forth for the cranes, and it is also determined by the off-line 
planning and by the trajectory planning module. The sequenc-
ing problem is sequence dependent when wjkr imp

A
_  ≠ wikp jmr

A
, .

To compute a solution to this model the following approach 
is used, based on the structure in (D’Ariano et al., 2008; Corman 
et al., 2010). Basically the problem is decomposed by consider-
ing the routing variables, (i.e., the assignments of containers to 

AGV) separately than the scheduling variables (i.e., the orders 
on the machines, and the related timing). Iteratively, the solver 
computes a new schedule for a given assignment of AGV 
to containers; and changes those assignments in search for 
improvements. Alternatively, the overall scheduling and rout-
ing formulation can be solved by a commercial Mixed-Integer 
Linear Programming (MILP) solver.

The scheduling procedure with a given assignment of AGV 
to containers is based on a branch-and-bound scheduling 
algorithm in (D’Ariano et al., 2007), which is an exact algo-
rithm truncated at a given maximum computation time. The 
algorithm computes a starting solution via a set of scheduling 
heuristics based on dispatching rules and graph properties. 
A near-optimal solution is computed in a short time by the 
branch-and-bound algorithm, starting from a reference sched-
uling solution obtained via greedy heuristic procedures and 
using a lower bound computed on a simplified version of the 
scheduling problem. In particular, the algorithm is based on a 
binary branching scheme in which the branching decision is a 
sequencing order between two jobs in a resource.

The procedure changing assignments of AGV is instead 
based on a local search and a metaheuristic procedure, which, 
starting from any given scheduling and routing solution, itera-
tively changes assignment, in search for routing improve-
ments. The procedure returns the best schedule and the best 
assignment between AGV and containers after a stopping cri-
teria is reached, in this case a maximum computation time. 
We consider two metaheuristics in this paper: a Variable 
Neighborhood Search (VNS) and a Tabu Search (TS). These 
algorithms have been implemented in the AGLIBRARY opti-
mization environment, that is a solver developed at Roma Tre 
University and used in many different fields of applications so 
far (Samà et al., 2013; 2014).

The VNS metaheuristic is based on the combination of differ-
ent neighborhoods. Based on a local solution to the scheduling 
and routing problem, and an assignment AGV-container, a move 
is the assignment of one or more containers to a different AGV. 
This is done based on neighborhoods related to the makespan 
and the structure of the problem, similar to (Samà et al., 2015a; 
2015b). The variable neighborhood search alternates a local 
search phase in which the neighbors of a solution are evaluated 
and the best one is selected, to a perturbation phase in order to 
escape from a local minimum in case such situation is reached. 
This latter phase consists in changing the neighborhood, in this 
case considering a neighborhood of larger size. When the neigh-
borhood size increases, the number of changed routing deci-
sions increases. The VNS algorithm used is an adaptation of the 
“Basic” VNS described in Hansen et al. (2008).

The TS metaheuristic is a metaheuristic based on local 
search, which makes extensive use of memory for guiding the 
search. Each neighbourhood strategy restricts the set of moves 
to be explored in order to speed up the search of the best move. 

(1)
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The neighbourhood strategies tested in this paper are based 
on routing decisions on the critical path, similar to (D’Ariano 
et al., 2008; Corman et al., 2010). When no potentially better 
solution is found on the incumbent solution neighbourhood, the 
search alternates neighbourhood strategies based on the critical 
path method (D’Ariano et al., 2008; Corman et al., 2010) with 
a diversification strategy, which consists of changing at random 
the AGV assigned to a number of containers at the same time. All 
neighbours are evaluated via some scheduling heuristics. The 
best neighbour is set as the move to be made, and re-evaluated 
via the branch-and-bound scheduling algorithm; the resulting 
best solution is set as the new incumbent solution. The inverse 
of the chosen move is stored in a tabu list of a given length, that 
is used to avoid being trapped in local optima and revisiting the 
same solution. The moves in the tabu list are forbidden for a 
number of iterations and no aspiration criteria is used.

The overall framework returns thus a detailed schedule in 
which an AGV is assigned to every container in the studied 
time horizon of prediction, and all potential sequencing (not on 
the trajectory) conflicts on cranes and AGV are solved.

3.2 Optimal control for continuous trajectory planning
This section focuses on the continuous-time dynamics of 

the machines. We here call (QCs, AGVs and ASCs) equip-
ment, to underline that a continuous dynamics is considered. 
The models of QCs and ASCs are less complex than AGVs 
as they have single-dimension movements, and no interaction 
with each other and do not require particular attention. For 
more details, see (Xin et al., 2014a).

We assume that each AGV to have identical dynamics. For 
each AGV, a discrete point-mass model is used to approximate 
the dynamical behavior in two-dimensional space according 
to a given acceleration and speed as follows: at time instant
k, ∀p ∈ [1, ..., nagv]
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.  Each AGV is assumed to 
respond to accelerations, which is the only control action pos-
sible u p p pk u k u k( ) = ( ) ( ) 

x y
T

. Acceleration and speed have 
theoretical constraints  |up(k)| ≤ umax  and  |vp(k)| ≤ vmax . Those 
latter limits on velocity and acceleration of AGVs are approxi-
mated by polygons using linear equations (Richards and How, 
2002) as follows: ∀m ∈ [1, ..., M]
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where  M  is an arbitrary number used to achieve a quasicircular 
approximation of the constraints. Large  M  results in a better 
approximation; a value of  M = 10  is used.

Besides the vehicle dynamics, two types of obstacles of 
AGVs are also considered. The first one is the static obstacle 
represented by the stacking area near the transfer point. There 
are two tracks of a stacking crane on one side of the stack where 
containers are handled. For security reasons, AGVs should not 
approach the area of these tracks. The other possibility is a col-
lision with another moving AGV. To avoid both types of the 
collision safely, we consider each AGV has a rectangle safety 
zone which should at all times be free from obstacles. The 
avoidance requirement can be described using linear equations 
in order to force the position of the obstacles to be outside of 
the forbidden area. Static obstacles are represented by their 
extreme coordinates (shigh,x, shigh,y, slow,x, slow,y), and correspond 
to areas where the AGV cannot move closer than a distance  d:
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where  R  is a large positive number and  bin,τ ∈ {0, 1}  is a 
binary variable for modeling the AGV position with regard to 
the obstacle.

In the case when multiple AGVs are transporting containers 
to different destinations, the collisions between vehicles can be 
described in a similar manner. The moving obstacle AGV p2 , 
seen from the point of view of AGV p1 , can be described as a 
sequence of static obstacles over time as follows:
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The trajectory planning problem is the problem of determin-
ing a trajectory (sequence of points and feasible speed/accel-
erations) such that the destination point is reached within a 
target time, and the collision-free trajectory for a single AGV 
is generated by considering the trajectories of the other AGVs. 
The origin  rp

0   and destination  rp
f   depend on the transfer point 

of the container to be processed at the QC and the ASC. The 
starting time  tp

0   and the target ending time  tp
f   are given by 

the discrete-event dynamics.

(2)

(3)

(4)

(6)

(5)

(7)

(8)



151Optimal Scheduling and Routing of Free Range AGVs � 2016 44 3

Suppose  T  is a number larger than  tp
f . Within a given 

interval [0, ..., T − 1], AGV  p  reaches  rp
f   at time  k. These 

constraints can be represented [14] as follows:  ∀k ∈ [1, ..., 
T − 1], ∀p ∈ [1, ..., nagv],
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where the constraints in (9) are active only when  bp (k) = 1. 
Equations (9) and (10) force the position  rp

f k( )   of AGV  p  to 
reach the target  rp

f   with condition  bp(k) = 1.
Then the trajectory planning problem is to minimize 

the deviation on the arrival time, which can be described as 
kb k tpk

T ( ) −
=

−∑ f1

1 , where  kbp (k)  is the ending time of the trajec-
tory. Here we also consider improve energy efficiency of the 
planned trajectory and minimize the sum of accelerations with 
a small penalty  λ (=0.01) in the objective function, considered 
as an additional secondary objective. Thus, the resulting mini-
maltime optimization problem can be formulated as follows:

min ,
,u b

kb k t u k u kp p
k

T

x y
k

T

( ) − + ( ) + ( )( )
=

−

=

−

∑ ∑f

1

1

0

1

λ

subject to (2)-(10), where  u = [u(0), u(1), ..., u(T − 1)]T  
denotes continuous decision variables and  b = [bp(0), bp(1), 
..., bp(T − 1)]T  denotes binary decision variables.

The optimization problem above can be modelled as a 
MILP formulation (Xin et al., 2014a). After the trajectory is 
planned, the actual time for processing the operation of the 
AGV and the ending time of the operation is updated in the 
discrete-event dynamics.

4 Practical case study
We provide here the solution for a practical case study at 

a container terminal based on 4 QCs, 6 AGVs and 6 stack-
ing cranes, in a standard layout. We simulate 40 containers 
to be transported from the QC to the ASC, considering only 
a single-directional setup. This is without loss of generality; 
the general applicability of the framework holds also for the 
opposite direction, and also for mixed loading/unloading oper-
ations. The instance corresponds to about 16819 ordering deci-
sions variables  x(jkr,imp),(ikp,jmr)  across QCs, AGVs, ASCs, and 
240 routing variables  yip.

4.1 Evaluation of discrete event dynamics
We here analyze the performance of the discrete event 

scheduler. The makespan of the best solution computed by the 

AGLIBRARY optimization environment used, before trajec-
tory planning, is 466 seconds. We note here that the approach 
used in (Xin et al., 2014a) and solved with the commercial 
solver CPLEX returns no integer solution after one hour of 
computation time.

The maximum computation time given to AGLIBRARY is 
10 minutes. The evolution of solution quality against time is 
plotted in time is reported in Fig. 3. After around the first 3 
minutes of computation, the solution does not improve.
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Fig. 3 Solution quality over computation time.

A first solution is found in less than 10 seconds, with value 
494 for the makespan. The best solution is then found just 
around 180 seconds. The gap between the first solution found 
and the best solution is in this case limited by 6 %.

Figure 4 reports a Gantt chart of the solution. On the Y-axis 
the equipment/machines are reported, i.e. from top to bottom 4 
QCs, 6 AGVs and 6 ASCs. Containers are reported as boxes in 
the Gantt chart, with their ID inside the box. The solution has 
some slack, in the sense that 7 out of the 40 containers can shift 
in time without changing the makespan or even influencing the 
completion time of the last containers on their last machine.

Fig. 4 Gantt chart of the solution after the trajectory planning.

(10)

(9)

(11)
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4.2 Evaluation of trajectory planning
The output of the trajectory planning module results in 

updated trajectories for 12 of the containers out of 40 (30 %). 
The total makespan raises to 468 seconds (from 466 seconds).

Figure 5 reports the actual trajectories of the AGVs moving 
the containers, in the bidimensional space of the quay area. We 
observe that it is evident how for some AGVs the trajectory 
followed does not correspond to the minimal-distance trajec-
tory, but instead to the time-tracking trajectory, based on the 
trajectories of all other AGVs.

The average driving distance of free-ranging AGVs is 115.9 
meters, which is significantly less than when a mesh routing 
(Duinkerken et al., 2006) would be used. The latter routing 
would require 146.7 meters of average driving distance.

0 50 100 150
0

50

100

150

200

250

x(m)

y(
m

)

Fig. 5 Trajectories of the AGVs.

5 Experimental assessment on realistic instances
We extend the computational analysis in this section to a 

set of realistic instances that generated from the practical 
case study of the previous section. We generated the realistic 
instances by varying the number of containers and AGVs in 
the following range: {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 
65, 70, 75, 80} and {6, 8, 10}, respectively. In total, we have 
45 realistic instances, that are investigated for 6, 8 or 10 AGVs. 
The aim of this section is to compare the advanced metaheuris-
tics with the commercial solver CPLEX when dealing with dis-
crete event dynamics.

Table 1 presents the number of ordering (x), routing (y) and 
timing (t) variables and the number of constraints of the MILP 
formulation. This information is the average information on the 
45 realistic instances for 6, 8 or 10 AGVs. When increasing the 
number of containers, the ordering (routing) [timing] variables 
varies from 1014 (60) [80] till 71735 (480) [640] in case with 
6 AGVs, from 1662 (80) [100] till 117486 (640) [800] in case 
with 8 AGVs, from 2470 (100) [120] till 176163 (800) [960] in 
case with 10 AGVs.

Table 1 Characteristics of the discrete event instances

Num. of 
AGVs

Num. of Variables Num. of 
Constraintsx y t

6 27094 260 360 55587

8 44297 360 450 90444

10 65857 450 540 134012

Tables 2, 3, 4 report the computational results obtained for 
6, 8 and 10 AGVs. We evaluate the performance of the CPLEX 
solver and the AGLIBRARY algorithms: the truncated branch-
and-bound (BB) algorithm for the scheduling problem without 
routing flexibility, the Variable Neighborhood Search (VNS) 
and the Tabu Search (TS) for the overall scheduling and rout-
ing problem. For each algorithm/solver, we give the average 
value on the 45 realistic instances in terms of the makespan (in 
seconds) and the computation time (in seconds). A maximum 
computation time of 10 minutes was given for each algorithm/
solver. We observe that the CPLEX solver failed to compute 
a feasible solution within the given computation time for 2 
instances with 6 AGVs, 1 instance with 8 AGVs and 4 instances 
with 10 AGVs. In case of infeasibility, we assigned to CPLEX 
the value of the worst solution computed by AGLIBRARY in 
Tables 2, 3, 4.

Table 2 Results for 6 agvs

Algorithm Makespan (m) Comp. Time (s)

BB 669.7 485.7

VNS 560.7 294.7

TS 557.3 435.8

CPLEX 670.9 600.0

Table 3 Results for 8 agvs

Algorithm Makespan (m) Comp. Time (s)

BB 491.8 451.7

VNS 491.6 302.6

TS 489.3 499.6

CPLEX 594.2 600.0

Table 4 Results for 10 agvs

Algorithm Makespan (m) Comp. Time (s)

BB 950.2 600.0

VNS 446.3 263.8

TS 453.8 489.7

CPLEX 512.0 600.0
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Comparing the results obtained for the various algorithms/ 
solvers, TS and VNS outperform BB and CPLEX. Specifically, 
TS is, on average, the best algorithm in terms of solution qual-
ity for the instances with 6 and 8 AGVs. This result is due to the 
fact that TS searches for better routes in well-focused and quite 
restrictive neighborhoods. Differently, VNS operates more 
extensive routing modifications during each move compared to 
TS. The diversification strategy of VNS gives positive results 
for the large size instance with 10 AGVs, for which VNS out-
performs the other approaches in terms of both solution quality 
and computation time.

Figure 6 presents the improvement between the solu-
tion computed by the VNS algorithm, and and considering 
offline assignment of AGVs for the containers. The makespan 
improvement is measured in percentage of the makespan, for 
each instance.

From the results of Fig. 6, the improvement goes beyond 
30 % for some instances, being larger for the instances with 
more than 25 containers. Therefore, the larger is the control 
horizon the more is the potential improvement of optimal rout-
ing options.

Fig. 6 Routing improvement when varying the number of containers.

6 Conclusions and further research
This paper considers the problem of controlling operations 

at an automated container terminal. In particular, a math-
ematical formulation based on the alternative graph model 
of (Mascis and Pacciarelli, 2002) is proposed for solving the 
underlying hybrid flow shop model with flexible routing. The 
AGLIBRARY solver is subsequently adopted to solve the prob-
lem. This solver is able to compute a good quality solution in 
an acceptable computation time, while the sheer size of larger 
instances (mainly due to the amount of containers) might not 
always allow to get a solution timely when the CPLEX solver 
is used. AGVs exploit free range navigation, saving distance 
and time. The makespan is affected only to a minor extent by 
the free range routing.

The hierarchical control approach is able to perform a con-
tinuous trajectory planning for all movements of pieces of 

equipments. The framework allows to handle large instances 
provided that: a solution can be found by the discrete event 
scheduler; the trajectory planner can solve its problem; and the 
update of trajectories does not result in a continuous-dynamics 
deadlock (i.e. two vehicles which cannot move forward due to 
the presence of the other vehicle on the respective trajectories).

We note that discrete-dynamics deadlocks are avoided by 
the discrete event scheduler, while in general the trajectory 
planning operating one AGV at a time has limited guarantee to 
deliver a deadlock-free plan by itself. The inclusion of suitable 
constraints or extended buffer in the discrete event scheduler 
to prevent the possibility of having continuous-dynamics dead-
lock should be subject of further work.

The computational results provided in this paper confirm 
that metaheuristic approaches can successfully solve large-scale 
instances (keeping a discrete-dynamic perspective) and this can 
be coupled successfully with hybrid dynamics. Specifically, the 
metaheuristics of AGLIBRARY clearly outperform the results 
obtained with CPLEX in terms of both solution quality and com-
putation time, thanks to the development of problem dedicated 
algorithms. Basic key performance indicators of the container 
terminal can be found when free-ranging AGVs are employed.

A follow up of this work would include a larger set of exper-
iments in order to investigate the impact of different solutions 
in terms of scheduling and routing planning and in terms of tra-
jectory planning. A special focus should be directed to further 
study large scale instances in which the capacity of the AGV 
area might become a bottleneck. Moreover, future research 
can be directed to the study of integrated approaches to solve 
quickly the problem, as well as the inclusion of energy-aware 
planning of the moving equipment.
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