
257Traffic Congestion Quantification Using Buses as Probes� 2019 47 4

Abstract 
Understanding congestion in space-time domain using perfor-
mance measures is essential prior to suggesting improvement 
schemes to reduce congestion. With technological advances like 
Global Positioning System (GPS), many metropolitan planning 
organizations give more emphasis on travel time based perfor-
mance measures to quantify congestion, than on traditional way 
of using volume-to-capacity (V/C) ratios. In India, often it may 
not be possible to use personal vehicles as probes for travel 
time data collection. However, the public transit buses fitted 
with GPS devices could be used as cheap and effective probes 
to estimate the congestion status of other types of vehicles in 
the stream. The present study is an attempt in this direction. 
Two bus transit routes in Chennai, India were considered as 
case studies in order to cover the wide range of geometric and 
traffic conditions on urban arterials. GPS-fitted buses on these 
routes were used as probes in congestion quantification. As the 
dwell time at bus stops is a unique characteristic of transit buses 
when compared to other vehicles in the stream, a methodology 
has been proposed to find the dwell times including acceleration 
and deceleration times based on the approaching and departing 
speeds at bus stops. Regression models were then developed to 
predict the Congestion Index (CI) for various types of vehicles 
using bus CI, weighted carriageway width and the presence or 
absence of signalized intersection as independent variables. 
The results are promising and could be considered for real-time 
display of congestion levels for Advanced Traveler Information 
System (ATIS) applications.
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1 Introduction
The problem of traffic congestion and ways to tackle it is a 

major concern in most of the metropolitan cities around the world 
and India is no exception to this. The exponential growth of per-
sonal vehicles, combined with increase in trips and trip lengths 
are the major reasons for traffic congestion in India. In Chennai, 
which is the fourth largest Metropolitan City in India, the total 
personal vehicle population has increased from 1 million in 1999 
to almost 3.7 million in 2012. This accounts for about 270 per-
cent rise in the last 13 years. The modal share of public trans-
port in Chennai is currently 27%, which should be eventually 
increased to 46% by 2026 (CMRL, 2011). The decreasing use 
of public transport further exacerbates the congestion situation.

The solution options for reducing congestion are infrastruc-
ture expansion, Transportation System Management (TSM) 
measures, congestion pricing and technology applications like 
Intelligent Transportation System (ITS). Before suggesting 
any of the above measures to reduce congestion, it is essen-
tial to first study the current system performance. The process 
of measuring or estimating congestion by one or many of the 
performance measures is called congestion quantification. The 
quantification of traffic congestion is useful in many areas of 
transportation engineering, such as the traditional capacity 
improvement, alternatives analysis, wide range of planning 
and policy evaluations, optimization of traffic control strate-
gies, providing alternate route choices in ITS applications, and 
for air quality and energy models. 

The methods to quantify congestion can be grouped into 
Highway Capacity Manual (HCM) measures, queuing-related 
measures, and travel time-based measures. Since traffic conges-
tion is a dynamic phenomenon with elements of both space and 
time, travel time based measures are more appropriate as they 
are good for dynamic conditions (d’Abadie and Ehrlich, 2002). 
The only disadvantage associated with the travel time based 
approach is the budgetary limitation which can impose restric-
tions on the number and coverage of travel time studies using 
test vehicles. In such cases, the personal or commercial vehicles 
fitted with GPS could be used as probes. In India, equipping 
private vehicles with GPS may be a difficult task due to privacy 
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and other issues. However, the public transit vehicles in major 
metropolitan cities of India are gradually being equipped with 
GPS devices. The Metropolitan Transport Corporation (MTC) 
of Chennai has GPS in 600 buses out of the total fleet size of 
about 3,400. Process is underway to install the GPS in another 
1,000 buses. Since there are no exclusive bus lanes for buses in 
Chennai, the public transit buses have to travel alongside other 
vehicles and quite often both experience similar traffic condi-
tions, intersection control and incidents or special events. The 
use of public transit buses as probes also offers other advantages 
like frequent trips during peak hours, wide range network cov-
erage, easy accessibility to the data, low initial and maintenance 
cost when compared to that of location based smart sensors, 
trouble-free installation and maintenance when compared to the 
fixing of loop detectors and other video based sensors. While 
these are the advantages of using public transit buses as probes, 
there are some associated challenges too. The dwell time or 
stopping time at bus stops, which is a unique characteristic of 
transit buses when compared to other vehicles in the stream, is 
one such issue. A careful consideration of the above aspect is 
very important while developing models to predict the conges-
tion level for other vehicle types using only buses as probes. As 
the carriageway width and presence or absence of signalized 
intersection also influences the duration and extent of conges-
tion, they have been considered in the present study.

Unlike in developed countries, in India and in other devel-
oping countries, the use of automatic traffic data collection 
techniques is in nascent stage. Also, the traffic comprises wide 
variety of vehicle classes of varying static and dynamic charac-
teristics and lane discipline is poor on urban roads. This restricts 
the applicability of certain performance measures which are lane 
based or vehicle based units for congestion quantification (eg., 
congested roadway expressed in lane-miles, congested travel 
expressed in vehicle-miles). Hence, in the present study, one of 
the simple and most widely used performance measures, namely 
CI has been used. Most of the studies using CI adopt a constant 
free flow speed/travel time (FFS/FF(TT)) across all the modes 
and sections assuming that the driver obeys speed limit restric-
tions. In India, due to various kinds of vehicles with different 
speed characteristics, the assumption of constant FFS/FF(TT) 
for all the vehicle modes may not be realistic. Hence the present 
study takes into account this variable nature of FF(TT) across 
modes and sections, by conducting GPS probe runs during early 
hours when the free flow conditions prevail on the roads.

The above issues highlight the need and challenges in devel-
oping a model which can predict the congestion level for various 
kinds of vehicles in the stream using only bus transit as probes.

2 Literature Review
The various methods to quantify congestion along with 

some notable studies under each method are briefly reviewed 
in this section.

2.1 Highway Capacity Manual (HCM) based method
The HCM based method mainly uses the volume-to-capac-

ity (V/C) ratio and level of service (LOS) as performance 
measures to measure/quantify congestion (Highway Capacity 
Manual, 2010). The use of V/C ratio is one of the traditional 
ways to quantify congestion because of the relative ease of traf-
fic volume data collection. They usually require detailed, loca-
tion-specific input data, which makes them more appropriate 
for individual highway segments or intersections, rather than 
for corridors or region-wide analysis (Quiroga, 2000; Grant 
and Fung, 2005). The HCM measures are difficult to use for 
long-range comparisons because concepts such as capacity and 
speed-flow relationships tend to change over time. Sometimes, 
estimating capacity even within 10 percent of its actual value 
can be a difficult task because of many variables which can 
influence capacity. Also, HCM based measures break down in 
oversaturated conditions (Beverly, 2004). Many HCM based 
studies adopt different classification of V/C ratios for depicting 
various congestion levels (CMP, 2011). In India, the notable 
studies on HCM based approach are by Patel and Varia (2010), 
Maitra et al. (1999) and Anjaneyulu and Nagaraj (2009).

2.2 Method based on queuing measures
The queuing-related measures concentrate on measurement 

of queue length and lane occupancy as performance measures 
to quantify congestion. Since it is usually impractical to meas-
ure queues on a broader spatial scale, queuing-related measures 
tend to be inappropriate for planning and policy-related anal-
yses (Quiroga, 2000). Installation of multiple loop detectors 
for queue detection in city streets has almost been precluded 
in view of the environmental cost and the need for systems 
maintenance (Yi et al., 2001). The study by Geroliminis and 
Skabardonis (2011) concluded that the queue length estima-
tion helps to preempt congestion by predicting congestion 
locations/times. It can also be integrated in real-time traffic 
management schemes, either at intersection scale or at larger 
complex urban systems.

2.3 Travel time based method
The travel time-based measures to quantify congestion are 

primarily based on travel time, travel speed, and delay. Since 
traffic congestion is a dynamic phenomenon with elements 
of both space and time, travel time based measures are more 
appropriate as they are flexible enough to describe traffic con-
ditions at various levels of resolution in both space and time. 
This makes travel time based measures appropriate for han-
dling specific locations as well as entire corridors (Quiroga, 
2000). Since most of the travel time based measures are 
dimensionless, it helps to compare mobility levels on different 
roadways or among different modes of transportation. It also 
allows analysts to perform comparisons over long periods of 
time, e.g., years or decades. The measures associated with the 



259Traffic Congestion Quantification Using Buses as Probes� 2019 47 4

time or speeds are easy to understand and interpret by both the 
transportation professionals and the travelling public. Travel 
time-based measures translate easily into other measures like 
user costs, and can be used directly to validate planning mod-
els such as travel demand forecasting models (Grant, 2011). 
Another advantage is that the travel time-based measures are 
applicable across modes (Laird, 1996) and reflect the com-
bined effects of geometric and operational features of the road 
(Beverly, 2004). Travel time measures can do a better job at 
pinpointing locations of congestion and can help in identify-
ing congestion causes (Beverly, 2004). All these reasons make 
travel time based measures extremely powerful, versatile, and 
desirable for congestion quantification. An increasing number 
of transportation agencies are switching to travel time meas-
ures to monitor and manage congestion (Quiroga, 2000; Grant 
and Fung, 2005). The National Cooperative Highway Research 
Program project on “Quantifying Congestion” (Lomax, 1997), 
has recommended that travel time-based measures be used to 
estimate congestion. The latest 2011 Urban Mobility report 
(Schrank, 2011) gives utmost priority for travel time based 
procedures to quantify congestion. 

Many studies have been reported worldwide which use 
travel time estimates to quantify congestion. The important 
ones are by Quiroga (2000), Taylor et al. (2000), Tong (2000) 
and D’Este et al. (1999). In the above studies, the test vehicle 
(passenger car) is adopted and a constant free flow travel time 
was assumed while calculating the performance measures such 
as delay, time moving, congestion index, proportion stopped 
time, etc. The studies on travel time based congestion quan-
tification are still in a rudimentary stage in India. One of the 
earlier attempts in India was by Srinivasan and Shetty (1971) 
and a similar recent study was by Lovely and Madhu (2006). 

In the studies on travel time based congestion quantification, 
the posted speed limit was considered as the FFS assuming that 
the drivers follow speed regulations and FF(TT) was derived 
using this constant FFS. The variable or actual FF(TT), which 
is more realistic in urban context, has not been considered 
while calculating congestion measures. Most of the studies on 
travel time based congestion quantification use only test vehi-
cles (mostly passenger cars) which are specifically dispatched 
for travel time data collection. The objective of most of the 
travel time based congestion studies as reviewed above was to 
assess the performance of the current system using measures 
such as delay, congestion index, etc., and so they employed test 
vehicles for a fixed duration. But if one wants to display the 
real time congestion status through web for ATIS applications, 
running test vehicles at frequent intervals will not be feasible 
all the time due to financial constraints. In such cases, an attrac-
tive option is to use probes which are already in the stream 
(and not specifically for the purpose of data collection), such 
as personal and commercial vehicles, public transit buses, etc. 
In countries like India, fixing GPS on personal vehicles is not 

practically feasible due to privacy and other issues. For com-
mercial vehicles such as call-taxi, though they have GPS sys-
tems for tracking their own vehicles, they may not be willing 
to share the GPS data due to business reasons. Hence, a viable 
option is to use public transit buses fixed with GPS instruments 
for quantifying the congestion level in the stream. The stud-
ies on the use of bus as probes for congestion quantification 
are very limited (Chen, 2010; Berkow et al., 2008). The driv-
ing manuvers for heavy vehicles especially in urban roads are 
more difficult than passenger cars because of its passenger car 
equivalent factor. This is one of the main reasons why less 
number of studies were attempted on the use of bus as probes 
for congestion quantification. The above review of past studies 
indicate the need and challenges in developing a model which 
can predict the congestion level for various kinds of vehicles in 
the stream using only bus transit as probes.

3 Data Collection and Extraction
The study stretch selected for the present study was two bus 

transit routes, namely 5C and 23C in Chennai, India. These 
routes cover the wide range of geometric and traffic conditions 
on urban arterials. The selected stretches are a typical represen-
tation of urban routes in India comprising road links of different 
categories like major arterials, and collector streets with varying 
geometrics and volume levels. A photograph of the 5C route at 
one of the locations is shown in Fig. 1. As can be seen, the traffic 
is highly heterogeneous in nature with mix of vehicles of dif-
ferent static and dynamic characteristics such as two-wheeler, 
three-wheeler, light motor vehicle and heavy motor vehicles. 
The lane discipline is also poor with no exclusive bus lanes and 
the buses have to share the road with other vehicles. The route 
number 5C connects the Parrys bus terminus in the northern 
part of Chennai, and the Taramani bus terminus in the south-
ern part. The time headway between the buses varies between 
15-30 minutes. The total route length of 5C is 15 km and has 
23 bus stops and 14 signalized intersections. The route number 
23C connects the Ayanavaram bus terminus in the north western 
part of the city and the Tiruvanmiyur bus terminus in the south-
ern part. The time headway between the buses varies between 
15-30 minutes. The total route length of 23C is 19 km in out-
bound direction (Tiruvanmiyur to Ayanavaram) and 21.5 km in 
inbound direction (Ayanavaram to Tiruvanmiyur) and has 18 
and 21 bus stops in outbound and inbound directions, respec-
tively. The number of signalized intersections in 23C route is 21 
and 22 in outbound and inbound directions, respectively.

Data collection was carried out at different times of the day 
during April - June 2012 using GPS units, which were fixed in 
the public transit buses and by manually carrying GPS devices 
in three types of personal vehicles - two-wheeler, three-wheeler 
and car. Data collection was carried out using the funds avail-
able through Centre of Excellence in Urban Transport at IIT 
Madras, sponsored by Ministry of Urban Transport (MoUD), 
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Govt. of India. Fourteen trips were made for each mode in each 
bus route considered. The personal vehicle trip was started at 
the same time and location as that of the public transit bus and 
followed the same route with a speed representative of other 
vehicles. According to the travel time data collection handbook 
(Turner, 1998), the suggested test vehicle runs required for 
travel time data collection on urban arterial streets is 5, 6 and 
15 at 90% confidence level with permitted relative error of ± 
10 %, 95% confidence level with ± 10 % error and 95% confi-
dence level with ± 5 % error respectively. This states that, the 
minimum number of test vehicle runs should be in the range of 
5 to 15. The 14 trips for each mode in each bus route as adopted 
in the present study was close to the suggested number of test 
vehicle runs at 95% confidence level with ± 5 % error. Also, 
it states that the test vehicle runs should be evenly distributed 
over various times in order to capture the off-peak and peak 
traffic characteristics. The 14 trips were well distributed across 
varying time over several days in order to capture the off-peak 
and peak traffic characteristics as shown in Table 1 and 2 for 
23C-outbound and inbound directions, respectively.

Table 1 Details of data collection for 23C route – outbound direction

Two-wheeler Three-wheeler Car

Date 
(Trip starting time)

Date 
(Trip starting time)

Date (Trip starting 
time)

June 05, 2012 
(8.36 am)

June 05, 2012
(8.36 am)

May 18, 2012
(8.24 am)

May 07, 2012
(8.38 am)

June 04, 2012
(9.03 am)

May 16, 2012
(8.48 am)

May 08, 2012
(9.38 am)

May 25, 2012
(9.19 am)

May 14, 2012
(9.27 am)

May 09, 2012
(10.00 am)

June 01, 2012
(9.49 am)

May 23, 2012
(9.30 am)

April 27, 2012
(10.44 am)

May 24, 2012
(9.58 am)

May 11, 2012
(9.46 am)

May 03, 2012
(11.39 am)

May 25, 2012
(11.58 am)

May 17, 2012
(10.15 am)

April 26, 2012
(1.44 pm)

May 29, 2012
(1.10 pm)

May16, 2012
(11.51 am)

April 27, 2012
(1.49 pm)

May 28, 2012
(1.55 pm)

May 14, 2012
(12.34 pm)

May 02, 2012
(2.50 pm)

May 24, 2012
(2.24 pm)

May 17, 2012
(2.14 pm)

April 26, 2012
(4.19 pm)

May 29, 2012
(3.36 pm)

May 11, 2012
(4.12 pm)

April 27, 2012
(4.33 pm)

May 28, 2012
(4.42 pm)

May 18, 2012
(4.37 pm)

May 07, 2012
(5.35 pm)

May 24, 2012
(4.47 pm)

May 08, 2012
(5.21pm)

May 02, 2012
(6.22 pm)

June 01, 2012
(5.33 pm)

May 09, 2012
(5.38pm)

May 03, 2012
(7.36 pm)

May 25, 2012
(6.59 pm

May 14, 2012
(6.59 pm)

Table 2 Details of data collection for 23C route – inbound direction

Two-wheeler Three-wheeler Car

Date 
(Trip starting time)

Date 
(Trip starting time)

Date 
(Trip starting time)

June 05, 2012
(9.58 am)

June 05, 2012
(9.57 am)

May 18, 2012
(9.37 am)

May 07, 2012
(10.33 am)

May 25, 2012
(10.42 am)

May 16, 2012
(10.23 am)

May 08, 2012
(11.36 am)

June 04, 2012
(10.43 am)

May 14, 2012
(10.53 am)

May 09, 2012
(11.36 am)

June 01, 2012
(11.13 am)

May 23, 2012
(11.02 am)

April 27, 2012
(12.07 pm)

May 24, 2012
(11.28 am)

May 11, 2012
(11.47 am)

May 03, 2012
(1.09 pm)

May 25, 2012
(1.30 pm)

May 17, 2012
(12.08 pm)

April 26, 2012
(2.53 pm)

May 29, 2012
(2.21 pm)

May16, 2012
(1.17 pm)

April 27, 2012
(3.10 pm)

May 28, 2012
(3.13 pm)

May 14, 2012
(2.57 pm)

May 02, 2012
(4.48 pm)

May 24, 2012
(3.40 pm)

May 17, 2012
(3.30 pm)

April 26, 2012
(5.59 pm)

May 28, 2012
(5.56 pm)

May 11, 2012
(5.49 pm)

April 27, 2012
(6.10 pm)

May 29, 2012
(6.13 pm)

May 18, 2012
(6.19 pm)

May 07, 2012
(7.12 pm)

May 24, 2012
(6.38 pm)

May 08, 2012
(7.15 pm)

May 02, 2012
(8.06 pm)

June 01, 2012
(7.13 pm)

May 09, 2012
(7.33 pm)

May 03, 2012
(9.09 pm)

May 25, 2012
(8.40 pm)

May 14, 2012
(8.44 pm)

Fig. 1 Snapshot of one of the locations on bus route 5C
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Sometimes the data may become unusable if the GPS data 
contains data losses due to high rise buildings or tree cover 
in which case, a proper data quality check is essential to 
ensure accuracy in the travel time calculation using cumula-
tive distance values calculated through Haversine formula. 
The Haversine formula provides the great circle distance (i.e., 
shortest distance over the earth’s surface) between two pairs of 
latitudes and longitudes. For the case of GPS data loss along 
a straight road, the loss in data was not a major issue because 
the Haversine formula for cumulative distance assumes the 
missing portion as a linear section (shortest distance) which 
gives reasonably accurate results. However, for the GPS data 
loss along a curved road, the assumption of straight section 
(shortest) for the missing portion is not correct and this type 
of error if unnoticed may underestimate the travel time for that 
particular section. Under such circumstances, a suitable GPS 
data point at the curve was assumed with known latitude and 
longitude values (can be identified by placing the cursor in the 
selected point on the map). For finding the time stamp of the 
hypothetical GPS data point, a recently passed trip was used as 
the reference to find the time of travel from the last point (point 
from where the data loss started) to the hypothetical GPS point 
location. This travel time was then added to the corresponding 
time of the last GPS point in the missing data to find the time 
stamp of the hypothetical GPS data point as shown in Eq. (1).

T T ts h s l( ) ( )= +

Where, Ts(h) is the time stamp of the hypothetical GPS data 
point at the curve expressed in hh:mm:ss (eg., 08:10:50); Ts(1)  
is the time stamp of the last GPS data point (from where the 
data loss started) expressed in hh:mm:ss (eg., 08:10:20); t  is 
the travel time from the point where the data loss started to 
the hypothetical GPS point location calculated from a recently 
passed trip. The data quality control as described above to deal 
with the missing GPS data due to signal loss helped to obtain 
the correct travel time observations.

The total study stretch was divided into 500 m subsections 
in order to facilitate the comparison of section travel times of 
the bus and other vehicles. Uniform section length based dis-
cretization was adopted rather than link based discretization, 
because the number of intersections was less in the present case 
and so the number of links will be less for analysis. The uni-
form length based discretization inherently takes into account 
the delays at signalized intersections. For each trip, the travel 
times of bus probes and the personal vehicles in each of these 
500 m subsections were calculated. This process is repeated 
for all the 168 trips made (3 directional routes x 4 modes x 14 
trips). In order to find the free flow travel times (FF(TT)) to 
be used in the CI calculations, three sample runs were carried 
out for each mode in each route considered during early hours 
of 4 to 6 am over a two-week period and FF(TT) for each 500 
m section was extracted. As carriageway width is one of the 

independent variables in the proposed model, it was measured 
manually using tapes. For sections with varying carriageway 
widths, a weighted carriageway width has been arrived at based 
on the section lengths as shown below. 

Weighted carriageway width
c l

l

i i
i

n

i
i

n=
×( )

( )
=

=

∑

∑
1

1

where, Ci  is the carriageway width for section  of length l . The 
presence or absence of signalized intersection(s) in each 500 m 
section of both the routes were also noted down.

4 Congestion Analysis and Modelling
The methodology proposed here aims to find the relation-

ship between the personal vehicle(s) CI which is the variable 
of interest (dependent variable) and the public transit CI, which 
is taken as an independent variable. As road width and pres-
ence/absence of an intersection influences traffic congestion, 
they have also been considered as additional independent vari-
ables to quantify congestion levels for vehicles in the stream, 
using only buses as probes. The methodology proposed here 
uses regression technique for determining the model parame-
ters. This section starts with the procedure to remove the dwell 
times at bus stops with associated acceleration and deceleration 
times. The correlation analysis between bus and other vehicle 
travel times is discussed next. The details of the regression 
technique and the model formulation are presented after that.

4.1 Procedure to find the dwell times with associated 
acceleration and deceleration

Since all modes of vehicles are sharing the same roadway 
without any exclusive bus lanes, the only characteristic that 
differentiates the bus probes from the remaining vehicles is 
the dwell time at bus stops. The methodology to determine the 
dwell time or stopping time at bus stops including the time of 
deceleration and acceleration based on the speed of movement 
of the transit buses is explained below. 

After fixing the latitude and longitude range of each bus stop, 
a program in MATLAB has been written which will check for 
the lowest speed value (denoted as Kt, where t is the GPS time) 
corresponding to the selected bus stop range. For finding the time 
of start of deceleration, each pair of speed values (Kt and Kt-1, Kt-1 
and Kt-2, Kt-2 and Kt-3, etc.) will be checked, until the speed Kt-n 
> Kt-(n+1), where n=0, 1, 2, 3… The time corresponding to Kt-n is 
considered as the time of start of deceleration. In other words, for 
finding the time of start of deceleration, each pair of successive 
speed values (prior to the lowest speed) will be checked, until 
the prior speed (Kt-(n+1)) in the pair is lower. A similar procedure 
is adopted for finding the time of end of acceleration. For finding 
the time of end of acceleration, each pair of speed values (Kt and 
Kt+1, Kt+1 and Kt+2, Kt+2 and Kt+3, etc.) will be checked, until the 

(1)

(2)
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speed Kt+n > Kt+(n+1), where n=0, 1, 2, 3… The time corresponding 
to Kt+n is considered as the time of end of acceleration. The dif-
ference between the two times is taken as the dwell time, which 
includes the acceleration and deceleration times.

Once the dwell time with associated acceleration and decel-
eration times were found for all the bus stops in each bus trip, 
they were removed from the actual section travel times of the 
bus. After removing the bus stop dwell times, the bus travel 
time was correlated with the corresponding personal vehicle 
travel time in each section as explained in the following section 
to check whether buses could be considered as probes.

4.2 Correlation analysis between bus travel times 
and other vehicle

The two variables considered for the correlation analysis are 
the section-wise bus travel times (dwell time removed) and the 
personal vehicle travel times for each trip. The results of cor-
relation analysis show that the correlation coefficient is posi-
tive for all the 126 trips. It shows that if the traffic is higher in 
a particular section, both transit probe and other vehicles will 
get slowed down. Similarly, if free flow condition exists, both 
the modes travel fast. The hypothesis testing to check whether 
the correlation coefficient is zero or not shows that at 5% level 
of significance, 109 out of 126 trips (here, each trip is a pair of 
public transit and personal vehicle) have correlation between 
the bus travel times and other modes travel times. Thus, the 
bus travel time after removing the bus stops dwell times could 
be considered as a probe input for predicting the congestion 
status for other vehicles via travel time based measures, such 
as CI, as explained in the following section.

4.3 Regression model to determine the personal 
vehicle CI

In the present study, regression analysis was used to develop 
models to predict personal vehicle congestion index (CI). The 
reason for selecting regression analysis is that it offers many 
advantages when compared to other methods such as simplic-
ity, easy interpretation of the coefficients and its signs, avail-
ability in many statistical software packages and acceptance by 
scientific community. Other statistical methods such as artifi-
cial neural network (ANN) or support vector machines (SVM) 
haven’t been used as they required a huge database for model 
building. The regression analysis used in the present study 
required only limited input data, i.e., 14 trips for each mode in 
each bus route considered. One of the disadvantages of regres-
sion analysis is that the value of the dependent variable cannot 
be correctly estimated if the value of the independent variable 
falls outside  the  range  of  values  used  for  determining  the  
linear  regression equation. However this may not be an issue 
in the present case as the input dataset used for model building 
was well distributed across varying time in order to capture the 
off-peak and peak traffic characteristics.

One of the simple and most widely used congestion meas-
ures called CI is used in the present study to depict the con-
gestion level of personal vehicles using public transit buses as 
probes. The equation for finding the CI is given by (Richardson 
and Taylor, 1978)

Congestion Index CI Actual travel time free flow travel time
Fre

( ) =
−

ee flow travel time

A CI value of zero means that the actual travel time and free 
flow travel time are equal. A value of one means that the actual 
travel time is twice the free flow travel time. An index greater 
than 2 indicates congested condition (Taylor et al., 2000; D’Este 
et al., 1999). In the present study, three traffic periods were con-
sidered, namely, the off-peak, peak-morning or peak-evening, 
to study the congestion level of vehicles during different time 
periods. The time period from 8 am to 11 am and 5 pm to 8 
pm were considered as the morning and evening peak periods, 
respectively, and the remaining time periods were considered 
as off-peak. Based on this, a total of 126 trips (here each trip 
is a pair of public transit and personal vehicle, both of which 
started at same time and location) in all three directional routes 
considered in this study were classified into off-peak, morning 
peak hour or evening peak hour trips based on their trip depar-
ture times. Section-wise average travel times were calculated 
for the off-peak, morning peak and evening peak hour trips. The 
average section-wise travel times were then used as actual travel 
times in Eq. (3) to calculate the section-wise CI.

For public transit buses, the dwell time removed section 
travel times were used for bus CI calculation. Both fixed and 
variable FF(TT) were considered while calculating CI using 
Eq. (3). For fixed FF(TT), a constant free flow speed (FFS) 
of 40 km/h (the corresponding FF(TT) is 45 sec. for a 500 m 
section) was assumed for all the modes. The reason for select-
ing 40 km/h as FFS is that, in most parts of Chennai city, the 
speed limit is 40 km/h. The section-wise variable FF(TT) is 
based on three sample probe runs for each mode in each of the 
three routes during the free-flow hours of 4:00 to 6:00 am. The 
extracted section-wise FF(TT) was averaged across the three 
trips for each mode and are shown in Figs. 2, 3 and 4 for 5C, 
23C- outbound and 23C-inbound directions, respectively. 

Fig. 2 Free Flow Travel Times of Two-Wheeler, Three-Wheeler and Car for 
5C Route

(3)
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Fig. 3 Free Flow Travel Times of Two-Wheeler, Three-Wheeler and Car for 
23C (Outbound) Route

Fig. 4 Free Flow Travel Times of Two-Wheeler, Three-Wheeler and Car for 
23C (Inbound) Route

It can be observed that car travels much faster than two-
wheeler and three-wheeler and shows comparatively less travel 
times in most of the sections during the free flow hours. It is 
also observed that, all the three modes exhibit a similar trend 
(increasing or decreasing pattern) in travel time over the sec-
tions. This indicates that road geometry plays a significant role 
in FF (TT) of various modes. For example, if the carriageway 
width is less in a certain section, the travel speed of all three 
modes gets reduced and shows a similar trend of travel time 
values. Hence, instead of directly using the averaged FF (TT) 
for each section, which will be more site-specific, the FF (TT) 
classified based on carriageway width was considered. For this, 
the weighted carriageway width was divided into four catego-
ries, namely, 4 to 8 m, 8 to 12 m, 12 to 16 m and 16 to 20 m, 
and the section-wise FF (TT) s were averaged. This process is 
repeated for all the modes. Similar to personal vehicles, three 
early morning trips of public transit buses were considered to 
derive the section-wise variable FF (TT) after removing the 
dwell time. The results of FF (TT) classified based on car-
riageway width is shown in Fig. 5. It can be seen that the FF 
(TT) gradually decreases when the width of the carriageway 
increases. The corresponding FFS is shown in Fig. 6 for vari-
ous categories of carriageway widths. This way, one can get the 
FF (TT)/FFS for a specific mode and for a specific carriageway 
width, which could be used in CI calculations.

Fig. 5 Free Flow Travel Times for Various Modes Classified Based on 
Weighted Carriageway Widths

Fig. 6 Free Flow Speeds for Various Modes Classified Based on Weighted 
Carriageway Widths

Seven regression models based on categorical regression 
analysis were developed to study the relationship between 
personal vehicle(s) CI and public transit CI for each period 
(off-peak, peak- morning, peak-evening) and each mode (two-
wheeler, three-wheeler and car). A final combined model con-
sidering all the modes and periods together was also developed 
to predict the congestion level for other vehicles in the stream 
using bus probe data. The general forms of the estimated 
regression models are shown in Eqs. (4), (5) and (6). 
A). Off-peak period for all the three modes

y a a X a X a X a X a X= + + + + +0 1 1 2 2 3 3 4 4 5 5

Where, y = Personal vehicle CI for off-peak period
X1 = Public transit CI
X2 = Carriageway width
X3 = Presence (1) or absence (0) of Signalized intersection
X4 = 1 if three - wheeler,  X4 = 0 otherwise, 
X5 = 1 if car, X5 = 0 otherwise, 
where, a0 is the regression constant; a1 , a2 , a3 , a4 and a5 are the 
estimated regression coefficients for the variables  X1 , X2 , X3 , 
X4  and X5 , respectively. X4 and X5 are the categorical regression 
variables to account for the three modes considered. A similar 
equation will apply for the peak-morning and peak-evening pe-
riods as well.

(4)
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B). Two-wheeler for all the three periods

y b b X b X b X b X b X= + + + + +
0 1 1 2 2 3 3 4 4 5 5ˆ

Where, ŷ = Two-wheeler CI
X1 = Public transit CI
X2 = Carriageway width
X3 = Presence (1) or absence (0) of Signalized intersection
X6 = 1 if peak morning period, X6 = 0 otherwise
X7 = 1 if peak evening period, X7 = 0 otherwise
where, b0 is the regression constant;  b1 , b2 , b3 , b6 and b7  are the 
estimated regression coefficients for the variables  X1 , X2 , X3 , 
X6  and X5 , respectively. X6 and X7 are the categorical regression 
variables to account for the three periods considered.  A similar 
equation will apply for the three-wheeler and car as well.
C). All the modes for all the periods together

y c c X c X c X c X c X c X c X= + + + + + + +
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7ˆ

Where, ŷ = Personal vehicle CI for a particular mode during a 
particular period
X1 = Public transit CI
X2 = Carriageway width
X3 = Presence (1) or absence (0) of Signalized intersection
X4 = 1 if three - wheeler, X4 = 0 otherwise, 
X5 = 1 if car, X5 = 0 otherwise, 
X6 = 1 if peak morning period, X6 = 0 otherwise
X7 = 1 if peak evening period, X7 = 0 otherwise
where, c0 is the regression constant; c1 , c2 , c3 , c4 , c5 , c6 and c7  
are the estimated regression coefficients for the variables  X1 , 
X2 , X3 , X4 , X5 , X6  and  X7 , respectively. The results of regres-
sion analysis using the above models are presented in the fol-
lowing section.

5 Results and Discussion
Microsoft Office Excel 2007 is used to determine the regres-

sion model. The plot of personal vehicle CI versus the bus CI 
is shown in Fig. 7 for all the seven cases for constant FF(TT) 
case. Similarly, Fig. 8 shows the corresponding cases for vari-
able FF(TT) case.

Overall, the plots in both Figs. 7 and 8 do suggest a lin-
ear relationship between the personal vehicle CI and bus CI 
calculated using the dwell time removed bus travel time. It is 
observed from both the figures that, for off-peak period, the CI 
variation is less when compared to that of peak-morning and 
peak-evening periods. The comparison of Figs. 7 and 8 sug-
gests that the assumption of constant FFS/FF (TT) while cal-
culating CI values may not be a realistic one as it exaggerates 
the congestion level, especially for public transit buses. For 
example, in Fig. 8, the CI values based on actual FFS/FF (TT) 
for bus is only in the range of 0 to 1.5 during off-peak period 
and 0 to 2.5 during peak periods, whereas, the CI variation for 
bus assuming constant FFS/FF (TT) is in the range of 0 to 3 and 
0 to 4.5 for off-peak and peak periods, respectively (Fig. 7). 

A similar phenomenon can be observed while considering the 
individual modes also; CI variation for bus is exceptionally 
high and reaches a value of around 4.5 in Fig. 7, whereas the 
CI calculated using variable FF(TT) is only in the range of 0 
to 2.5 as observed in Fig. 8. This clearly shows that the use 

Fig. 7 Plot of Bus CI versus Personal vehicle CI for various categories of 
modes and traffic periods for constant FF(TT) scenario

Fig. 8 Plot of Bus CI versus Personal vehicle CI for various categories of 
modes and traffic periods for variable FF(TT) scenario

(5)

(6)
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of variable or actual FFS/FF(TT) for CI calculations would be 
more realistic than using a constant FF(TT) across all the sec-
tions and modes. Hence, it was decided to use the variable or 
actual FF(TT) for CI calculations. In Fig. 8, it is interesting to 
see that there is a considerable difference in CI variation among 
the personal vehicles considered. For example, the CI variation 
for two-wheeler is only in the range of 0 and 2.5, whereas for 
three-wheeler, the range is 0 and 3.5 and for car, it is between 
0 and 4.5. Since two-wheelers in heterogeneous traffic can eas-
ily maneuver through the available space between vehicles 
as compared to three-wheelers and cars, their travel times are 
lesser, thereby showing a relatively low variation in CI when 
compared to other modes. The wide variation in CI between 
classes of vehicles as observed in Fig. 8 suggests the need for 
defining mode-specific congestion levels under heterogeneous 
traffic conditions as existing in India.

Overall, the R2 values for all the seven regression mod-
els lie in the range of 0.6 to 0.8, which suggests a reasonably 
good model for the present scenario of using bus as probes for 
predicting the other vehicle CI values, when considering the 
unique nature of traffic and data collection constraints in India. 
The results of regression analysis showing the coefficients of 
regression variables are shown in Table 3.

Table 3 Regression coefficients and p-values of independent variables

Regression 
coefficients 

p-value 

Intercept 0.098 0.055

Public Transit CI (X1) 0.937 4.2E-172

Carriageway width (X2) -0.010 0.019

Presence/ absence of signalized intersection 
(X3)

0.188 1.74E-12

Categorical variable for mode (X4) 0.143 1.72E-06

Categorical variable for mode (X5) 0.418 8.05E-40

Categorical variable for period (X6) 0.040 0.168

Categorical variable for period (X7) 0.062 0.043

The carriageway width generally exhibits a negative coef-
ficient. It is logical that when carriageway width reduces, the 
capacity gets reduced and will result in an increased travel time 
and congestion. Intersection presence/absence (a binary vari-
able which takes the value of 1 or 0) exhibits a positive regres-
sion coefficient. It is consistent with the fact that when there is 
a signalized intersection in a 500 m section, the probability of 
congestion is high due to signal delays. In regression analysis, 
it is essential to check whether the coefficients are significant 
using the p-values. The p-values of independent variables are 
less than 0.05, except for X6; the results of step-wise regres-
sion analysis also show similar results. Hence, using the five 
independent variables, namely, X1, X2, X3, X4 and X5, the 
next step of model validation was performed. Out of the total 

924 data points considering all the modes and all the periods 
together, 75% of the data points were selected randomly using 
‘randsample’ command in MATLAB for regression model 
development and the remaining 25% of the data points were 
used for validation (Kotagi et al., 2016). The final model devel-
oped using 75% of the data points is given below in Eq. (7). 

y X X X X X= + − + + +0 108 0 914 0 008 0 198 0 140 0 424
1 2 3 4 5

. . . . . .ˆ

Where, ŷ = Personal vehicle CI for a particular mode 
X1 = Public transit CI
X2 = Carriageway width
X3 = Presence (1) or absence (0) of Signalized intersection
X4 = 1 if three-wheeler, X4 = 0 otherwise
X5 = 1 if car, X5 = 0 otherwise

The final model shown in Eq. (7) was used to estimate the 
personal vehicle CI for the remaining 25% of the data points. 
The estimated personal vehicle CI was then compared with the 
observed personal vehicle CI using the measure mean absolute 
error (MAE) which is given by,

MAE
n

y y= −∑1 ˆ

where, ŷ is the estimated personal vehicle CI and y is the ob-
served personal vehicle CI. For comparison of the estimated 
CI values with the observed CI values, mean absolute error 
(MAE) was used rather than mean absolute percentage error 
(MAPE). This is due to the fact that the error measures based 
on percentage such as MAPE have the disadvantage of being 
infinite or having extreme values when the observed values are 
close to zero (Hyndman, 2006). In the present study, the CI val-
ues were in the range of 0 to 3.5 with most of the values close 
to zero and hence the MAPE was not considered. The MAE 
between the observed and estimated personal vehicle CI was 
found to be 0.248. The minimum absolute error is 0.0004 and 
the maximum error is 1.063. The value of MAE is indicative 
of the performance of the developed model for predicting the 
personal vehicle CI using only bus probe data. The plot of esti-
mated versus observed personal vehicle CI is shown in Fig. 9. 
It can be observed that the estimated CI is close to the observed 
CI, showing good performance of the developed model for es-
timating the class-wise CI for personal vehicles using only bus 
probe data.

6 Conclusion
In recent years, more emphasis is being placed on travel 

time based measures such as congestion index, to quantify traf-
fic congestion. Probe vehicles using GPS are attractive for esti-
mating congestion measures. Due to privacy and other issues, 
it may not be possible to employ the personal or commercial 
vehicles as probe vehicles in India, leading to the research 

(8)

(7)
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problem of quantifying stream congestion from bus (serving 
as probe) data alone using travel time based measures such as 
congestion index. In order to use bus data for such an applica-
tion, there is a need to remove the dwell times at bus stops. 
This has been given a careful attention in the present study 
by proposing a methodology which can calculate the dwell 
times with associated acceleration and deceleration times. The 
bus CI (calculated using the dwell time removed travel time), 
weighted carriageway width and presence/absence of signal-
ized intersection were considered as independent variables in 
the model to predict the mode-wise congestion levels under 
heterogeneous traffic conditions. Three directional bus routes 
were considered in order to capture the wide range of geometric 
and traffic characteristics of urban heterogeneous traffic. Both 
fixed and variable FF(TT) scenarios were taken into account 
and their influence on CI variation of various modes during 
different traffic periods were studied. It was found that the 
assumption of constant FFS/FF(TT) for calculating CI values 
may not be a realistic one as it exaggerates the congestion level, 
especially for public transit buses when compared to actual/
variable FF(TT) case. Seven regression models were built to 
take into account the various traffic periods and vehicle types. 
Wide variations in CI for each class of vehicles was observed, 

which indicates the need for defining congestion levels based 
on modes under heterogeneous traffic conditions as existing in 
India. The regression coefficients of the developed models are 
statistically significant and the signs of the coefficients are also 
logical in terms of their effect on congestion. The validation of 
the regression model using data splitting approach shows that 
the average absolute error between the predicted and observed 
personal vehicle congestion index is 0.248, which is indica-
tive of the performance of the developed model.  The proposed 
methodology for quantifying the congestion levels for vehi-
cles in the stream using only GPS-fitted buses as probes could 
potentially be used for real-time display of congestion status in 
ATIS applications in a cheap and effective manner.  With wider 
use of GPS in public transport buses, the availability of bus 
probe data in a continual and uninterrupted manner renders this 
approach as an attractive option.
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