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Abstract
Routing algorithms are traditionally considered to apply the 
sum of profits gathered at visited locations as an objective 
function since the Traveling Salesman Problem. This heritage 
disregards many practical considerations, hence the result of 
these models meet with user’s needs rarely. 
Thus considering the importance of this theoretical and mod-
eling problem, a novel objective function will be presented in 
this paper as an extension of the one inherited from the TSP 
that is more aligned with user preferences and aims to maxi-
mize the tourist’s satisfaction. We also propose a heuristic 
algorithm to solve the Team Orienteering Problem with rela-
tively low computation time in case of high number of vertices 
on the graph and multiple tour days. Based on the key perfor-
mance indicators and user feedback the algorithm is suitable 
to be implemented in a GIS application considering that even a 
3-day tour is designed less than 4 seconds.

Keywords
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1 Introduction
Routing algorithms are traditionally considered to apply 

the sum of profits gathered at visited locations as an objective 
function since the Traveling Salesman Problem. This heritage 
disregards many practical considerations, hence the result of 
these models meet with user’s needs rarely. In this paper after 
briefly introducing the related research activities, a novel heu-
ristic routing algorithm is to be presented, that aims to provide 
personalized tour plans for the users. Thus a novel objective 
function will be presented in this paper as an extension of the 
one inherited from the TSP that is more aligned with user pref-
erences and aims to maximize the tourist’s satisfaction. Then in 
section 4 we propose a heuristic routing algorithm to provide 
near optimal solution for the previously defined Team Orien-
teering Problem with relatively low computation time even 
in case of high number of vertices on the graph and multiple 
tour days. Based on the experiences, presented in section 5, 
the algorithm is suitable to be implemented in a GIS applica-
tion considering that even a 3-day tour is designed less than 4 
seconds. The performed user evaluation test confirmed that the 
proposed objective function provides significantly better route 
plans than the conventional approach inherited from the Trave-
ling Salesman Problem. It is also important to highlight that as 
of our knowledge there is no such existing solution, that is able 
to deliver route plan for multiple days, assigned and optimised 
to a dedicated hotel. It is also important to highlight that similar 
problem occurs in several fields and it is widely researched, 
though as of our knowledge there is no such existing Touristic 
solution, that is able to deliver route plan for multiple days, 
assigned and optimised to a dedicated hotel.

2 Related work
Probably the first milestone on the field of route planning 

was the Traveling Salesman Problem (TSP) formalized by 
Karl Menger (1928), though it was named by Hassler Whitney 
(Schrijver, 2005). The agent knows the travel cost of each arc 
and he has to minimize the overall travel cost while visiting all 
vertices. Thanks to Birkhoff’s (1946) work assignment prob-
lems can be solved by the simplex method, which has been used 
first by Danzig et al. (1954) to solve TSP.

1 Department of Mathermatics, 
Corvinus University of  Budapest 
H-1093 Budapest, Fővám tér 13-15, Hungary
* Corresponding author, e-mail: sandor.m.apathy@gmail.com

45(3), pp. 133-140, 2017
https://doi.org/10.3311/PPtr.9916
Creative Commons Attribution b

research article

PP Periodica Polytechnica
Transportation Engineering

Practical Route Planning Algorithm

Sándor Apáthy M.1*

Received 21 August 2016; accepted 08 December 2016

mailto:sandor.m.apathy%40gmail.com?subject=
https://doi.org/10.3311/PPtr.9916 


134 Period. Polytech. Transp. Eng. S. Apáthy M.

Orienteering Problem (OP) or often called Selective Trav-
elling Salesman Problem unfolded from the TSP, where each 
vertex has a profit assigned and each arc has a travel time cost. 
The agent has to visit vertices on the graph to maximize his 
profit while keeping the time boundary. The appellation origi-
nates from Chao et al. (1996a), though the problem was first 
formulated years before by Tsiligirides (1984). He applies sto-
chastic algorithm to provide an approximation of the optimum, 
and searches the next vertex in each iteration by Monte Carlo 
method. OP was also formalized by Kataoka and Morito (1988), 
albeit they labeled it as Maximum Collection Problem. Feil-
let et al. (2004) discuss the topic in more detail in their sur-
vey. OP appellation originates from the popular orienteering 
sports where one needs navigational skills and stamina to visit 
all checkpoints in the shortest time. It was the first area where 
the discipline of route planning solved a non-industrial prob-
lem, then it unfolded in other areas, such as hiking, biking and 
city trip planning. Wang et al (2008) are using OP techniques 
to design 1 day trips in a city starting and ending the tours in 
a given hotel. Golden et al. (1984) have proven that the OP is 
NP-hard, so exact solutions can only be given in case of small 
number of peaks. Ramesh et al. (1992) have applied Branch-
and-bound algorithm to provide exact solution for the OP on 
a graph of 150 vertices, while Fischetti et al. (1998) have been 
able to obtain exact solution with similar method even up to 500 
vertices in relatively short computational time. Opt-2 and opt-3 
methods have been applied in 4 phases by Ramesh and Brown 
(1991) to give a heuristic solution for the same problem. Chao et 
al. (1996b) outperform these results by incorporating a greedy 
and an opt-2 algorithm with stochastic methods in 5 steps to 
define a near-optimal route. In some case these heuristic meth-
ods can stuck in a local-optimum point that is effectively elimi-
nated by tabu search algorithms, e.g. Gendreau et al. (1998). As 
application of these results are recently gained focus, growing 
number of papers are concerning with the GIS implementations, 
particularly in mobile applications, e.g. Souffriau et al. (2008).

Team Orienteering Problem (TOP) is a natural extension of 
OP, where the agent has P days to visit vertices on the graph 
maximizing the sum of profits within the given time bounda-
ries, while each route starts and ends in a given hotel. TOP 
was first formalized by Butt and Chavalier (1994) to solve a 
recruitment problem. Column Generating algorithms perform 
effectively, where the problem is redefined and solved as an 
LP problem, though dimension is reduced to obtain better pro-
cessing time, as we can see by Butt and Ryan’s (1999) exact 
solution for 100 vertices in a relatively short computational 
time. Boussier et al. (2007) have reached better performance 
by incorporating column generation with a branch-and-bound 
method. Tabu search algorithm has been used to solve TOP 
by Tang and Miller-Hooks (2007) and also by Archetti et al. 
(2007). Ke et al. (2008) applied Ant Colony algorithm to pro-
vide a heuristic solution. As a first step 4 method have been 

tested simultaneously to obtain a viable solution, where they 
found the sequential algorithm to be the most effective. Then 
in each iteration they improve the solution with an opt-2 algo-
rithm and supplement the routes with additional vertices until 
reaching the boundaries. Vansteenwegen et al. (20089a) pro-
posed two heuristic solutions, the Guided Local Search (GLS) 
and the Skewed Variable Neighborhood Search (SVNS), Van-
steenwegen et al. (2009b), consisting of the same steps: after 
obtaining an initial solution the “less profitable” route sections 
are eliminated, then smaller routes are joined and optimized by 
swapping and replacing. SVNS clearly outperforms GLS by 
applying a different sequence of these steps. Further readings 
can be found in Vansteenwegen et al. (2011b), where computa-
tion times are also highlighted in each case.

3 Problem formalisation
We intend to solve the Team orienteering problem, formal-

ized first by Butt and Cavalier (1994), though as we do not nec-
essarily agree with the maximization of sum of profit points by 
visiting each arc, we recommend a new approach. This objec-
tive function has been inherited from the Traveling Salesman 
Problem, formalized and solved first by Karl Menger in the late 
20s, see Ramesh et al. (1992), where we can attribute particular 
meaning to collecting profit points by visiting the vertices. As 
per my understanding tourists are not interested in attraction 
they have evaluated poorly (namely assigning 4 or less points 
on a scale 1 to 10). Hence we decided to design an objective 
function as an extension of the broadly applied version. Let the 
utility function be u(si ,a), where si is the evaluation of the ver-
tex i by a certain user, and a is a parameter that measures how 
much the user appreciates an attraction evaluated as s compar-
ing to s-1. The utility function is designed as follows:

Fig. 1 Utility function

The effect of parameter a on the evaluation is depicted on 
Fig. 1. By using the utility function determined above we have 
the opportunity to rule out POIs that are undesirable for the 
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user (namely with evaluation under s*). Thus we avoid visiting 
POIs that are very close to our planned route, despite their poor 
evaluation. 

We use the following notation in the problem formalization: 
• N - number of vertices in graph G(N,E)
• E - number of arcs in graph G(N,E)
• P - number of available days
• B - daily budget constraint (the user only have to meet 

with the overall budget constraint BP)
• Tmax - daily time limit (the user has to meet with the daly 

time limit every day, and he can only exceed it with 5%)
• si - evaluation of vertex i
• vi - visit time of vertex i
• tij - travel time from vertex i to j
• τijp - is equal to 1 if in the pth path the vertex j is visited 

right after vertex i, 0 in any other cases
• θip - is equal to 1 if in the pth path the vertex i is visited, 

0 in any other cases
• β - parameter of “laziness” 
• α - parameter of the objective function to balance the 

importance of utility and visiting time - travel time ratio
• R - denotes the set of planned routes for P days
• bi - entrance fee for vertex i
The objective is to design P routes for P days that maxi-

mizes the objective function and observe the constraints. All 
vertices of the graph can be visited not more than once, except 
the hotel. Each route starts at the hotel and ends at the hotel 
(vertex number 1 and N denotes the hotel). The problem is for-
mulated as follows:

The interpretation of the lines:
1. Objective function to be optimized, where the two con-

sidered factors are the sum of visit times divided by the 
sum of travel times and the sum of utilities earned by 
visiting vertices.

2. Every route starts at vertex 1 and ends at vertex N (both 
denotes the same hotel).

3. Every vertex is visited once at most.
4. Every route is connected severally.
5. The routes are meeting with the time constraint for each day.
6. The routes are meeting with the budget constraint for the 

overall tour of P days.
7. and 8. together grants avoiding cycles in the route accord-

ing to Miller et al. (1960).
9. The value set of τijp and θip is 1 or 0.
Where our problem differs from the literature is the objec-

tive function which is clearly an extension of the usual profit 
collecting (since it yields the same formula for α = a = 0). 
According to the objective function there are main goals to 
complete: maximize the tourist’s sum of utilities and keeping 
low the visiting time and travel time ratio. Parameter α enables 
us to calibrate the weight of these objectives and keep balance.

4 Routing Algorithm
4.1 Functions

As the Orienteering Problem is NP-hard, hereby we intend 
to provide a novel heuristic algorithm to find a near-optimal 
solution for the problem defined in the previous section. We 
start presenting our routing algorithm with two functions:

Lexicographical ranking: We determine the rank of a set 
of vertices (C1) to another set of vertices (C2) considering the 
effectiveness of the constraints and the score threshold. More 
formally L(C1, C2, sc, s*), where sc denotes the resource that 
is more scarce (the estimation is going to be presented in the 
3rd step of the algorithm) and C1 is the set of vertices to be 
ranked based on the set of vertices in C2. Let us calculate the 
two measures below:

where d*(ci,C2) denotes the mean distance between vertex 
ci (element of C1) and the elements of C2. The nominator inter-
prets the utility of si in the units of the utility of s*+1 (which is 
the lowest score assigned to a vertex we consider to be visited, 
see the first step of the algorithm). In case of the second mea-
sure we divide the utilities by the corresponding entrance fee. 
L(C1, C2, sc, s*) first determines the scarce constraint, e.g. let it 
be the time. In this case it ranks the vertices of C1 based on the 
first measure, cuts the list into 6 equal pieces (the number of 
elements in the last group can differ), then it rerank the vertices 
within each group based on the second measure.
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Identifying outliers: O(H, cr) determines the outliers for a 
given Hamiltonian-cycle considering the cr threshold parame-
ter. First we calculate for each vertex of the Hamiltonian-cycle 
the sum of travel times of the inbound (ti,in) and outbound (ti,out) 
arcs. Vertex i is considered to be an outlier in case:

where tH* is the mean of inbound and outbound travel time 
and σH is the standard deviation. The value of cr differs in some 
cases that we indicate later.

4.2 The algorithm
The algorithm consists of the following steps:
1. Simplification of the problem space: let us eliminate 

all vertices with evaluation less than or equal to s*. We 
call the remaining vertices as the set of relevant points, 
denoted by Cr

2. Fixed vertices: let us appoint mandatory vertices, practi-
cally vertices with maximum evaluation (maxi{si}).

3. Grouping: Let us first estimate which is the more scarce 
resource. As a rule of thumb we calculate the below two 
measures:

4. Take the sum of visiting times of relevant points and 
the average distance between them (once for each) and 
divide it by the overall time constraint PTmax

5. The sum of entry fees for all relevant points divided by 
the budget constraint BP

6. The higher measure is considered to appoint the more 
scarce resource (so sc is determined). Let us choose the 
vertices with the highest score (as those are mandatory) 
then for all the remaining ones use L(C1, C1, sc, s*) and 
pick the first 5P points and add them to the mandatory 
vertices. Now determine an optimal Hamiltonian-cycle 
(including the hotel) on the vertex set, then apply O(H,1) 
to eliminate outliers. As it was stated earlier no fixed ver-
tex can be considered as an outlier.

7. Initial daily routes: The remaining vertices are to be 
separated into P groups (without any overlap) by Harti-
gan-Wong-algorithm, see Hartigan - Wong (1979). The 
computational cost of this method is dominated by the 
complexity of sorting, which is O(N logN). For each 
cluster we determine the shortest Hamiltonian-cycle 
(including the hotel), and choose the best result based on 
10 iterations. We consider a solution to be better in case 
the objective function’s value is higher for the P routes 
altogether. It is plausible that maximizing the objec-
tive function on a graph of fixed vertices it is equiva-
lent with finding the shortest Hamiltonian-cycle on the 
graph (where the travel costs are on the βth power), as the 
visiting times and utilities are invariable in the objective 
function. Thus we used R software’s Repetitive Nearest 
Neighbor algorithm to optimize TSP, Gutin et al. (2002).

8. Refill: In case of any free capacities in each day we refill 
the routes with the remaining points from Cr, hence we 
use L(Cr, Ci, sc, s*) for each day i, then fill the routes until 
we exceed any of the resource constraints by 20% (at 
this stage we allow violating the constraints). It is impor-
tant to note that in each time a vertex is eliminated, it 
instantly relocated to set Cr. In case a vertex is inserted to 
a route of any day, it is eliminated from set Cr.

9. Switch: For each point in all existing routes the mean of 
the 3 lowest distances from the points of the regarding 
route are to be determined (we also calculate this meas-
ure for the route contains the given point), and we assign 
the point to the route where the value of this measure is 
the lowest, and repeat it for 10 iterations.

10. Cut: In case a day exceeds the time constraint with more 
than 5%, we apply L(Ci, Ci, sc, s*) and eliminate the ver-
tices from the last in the rank until we meet with the con-
straint.

11. Refill: If we still have free capacities at day i, we apply 
L(Cr, Ci, sc, s*) and insert points from Cr from the top 
rank until we meet with any of the constraints.

5 Experimental results
We have performed our experiment on a POI list consists of 

150 touristic attractions in Budapest, including the visit times, 
entry fees, locations (longitude and latitude values) and the 
evaluations given by the users (that is assumed to be calcu-
lated based on our recommender system). The travel times are 
derived from the location applying OpenStreetMap API to cal-
culate the distance matrix for 150 POIs and the hotel assigned 
to the user. Hereby we summarize our experiences:

We obtain large bypasses in case of positive a parameter 
values, moreover the routes disintegrate when we apply low 
parameter values for α and β.

• In case α < 0.5 acceptable routes can only be obtained if  
β > 1.5 and a < -0.5

• Generally relatively good results have been observed in 
case a < – 0.5; α > 0.5 and β >1.5

• Considering the chargeability and the visiting time - travel 
time ratio as a measure of goodness we found α = 0.75;  
a = –1 and β = 2 parameter-set optimal in case of 1–2–3 
and 4 days, where chargeability denotes to what extent 
we utilized the available daily time limit (Tmax). We 
present in Appendix A a 4-day tour calculated applying 
these parameter values, and as a point of comparison 
the result of the “profit collection” case (α = a = 0) is 
also presented. The “profit collection” case has shown 
poor results: though the chargeability is almost equal to 
our solution (95% average) and the computation time is 
lower by 1 second, the visit time - travel time ratio is 
1.43 comparing to 3.8 in case of our parameter values, 
that indicates spending relatively much more time at the 

t t t cri in i out H H, ,+ > +∗ σ
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attractions than on traveling in the proposed solution 
comparing to the “profit collection” case.

• We ran the algorithm 100 times to calculate a 3 day 
tour, and we obtained 3.73 seconds mean computation 
time (we ran our tests in R software on a laptop with 
following details: 3.8 GB RAM, Intel Core i3-3217U 
CPU, 1.80GHz × 4 proc). Though we cannot compare 
the results to Vansteenwegen et al. (2011a) or Gavalas - 
Kenteris (2011), as we solved a different problem, as a 
point of comparison we mention the results of Sylejmani 
- Dika (2011), who presented a tour planner algorithm. 
The designed Taboo Search algorithm has created a tour 
of 3 days on a graph of 40 vertices with a mean computa-
tion time of 81.7 seconds.

• We also present the results of the test runs for each param-
eter combination (performing 20 iterations each). As we 
can see on Fig. 2. the mean computation time increasing 
significantly between the tours designed for 2 and 3 days. 
The average visit time - travel time ratio and the average 
chargeability slightly decreases by increasing the number 
of days.

• Based on the observation computation time is invariant 
to parameter a, while β slightly increases computation 
time in case of 3 or 4-day tours. Increasing a significantly 
increases computation time in case of multiple day tours. 
Most probably it is in relation with the fact that in these 
cases the algorithm struggles to find vertices that would 
increase the value of the objective function. In Appendix 
B we summarized how parameters are effecting charge-
ability, computation time and visit time - travel time ratio 
for 1–4-day tour cases.

• Visit time - travel time ratio (P-day tour overall) shows 
decreasing tendency by increasing the number of tour 
days, as the additional vertices are often located at a 
larger distance. While parameter a and β does not effect 
the ratio, increasing parameter α significantly increases it.

• In terms of approximability it is need to be highlighted 
that the traveling salesperson problem is strictly comp-
lete for the class of NP minimization problems w.r.t. any 
cost-respecting quality measure μ (Orponen and Man-
nila, 1990).

Fig. 2 Test results of the routing algorithm

6 User evaluation
A user evaluation test has been performed to compare the 

proposed objective function to the broadly applied approach 
inherited from the Traveling Salesman Problem that maxim-
ises the sum of profit points of visited arcs. The test application 
designs route plans for 1 to 4 days in 4 European cities (Buda-
pest, London, Paris and Rome) after the users proved informa-
tion on their travel preferences: daily budget (time and money), 
willingness to walk (3 options), number of days spent in the 
city, accommodation (6 options in each city) and POI prefer-
ences (17 types to be evaluated on a 4-level scale, e.g. museums, 
religious place, park and nature, etc.). Then the users have the 
opportunity to rate the proposed two route plans on a 10-level 
scale (where 1 denotes the worse recommendation the user can 
imagine, while 10 represents a near perfect recommendation).

Based on the web survey populated by 67 users (Fig. 3.) 
the proposed objective function received significantly higher 
average user evaluation (8.16) than the conventional approach 
(6.448), as the performed t-test confirmed the results (see 
Appendix C). As we consider user satisfaction to be the ulti-
mate measure of success in tour plan design, the test results 
reinforced our belief in the new approach and determine the 
future research direction.
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Fig. 3 Test results of the user evaluation

7 Conclusions and future work
A modified version of the TOP has been presented, that - at 

least according to our intentions - focusing more on a practical 
problem formulation related to the Touristic trip design prob-
lem. As part of our endeavor we designed an objective func-
tion that adjust the problem formulation according to the user’s 
preferences. A novel heuristic solution has been introduced 
to solve the TOP which provides an opportunity implement-
ing in a mobile tour planning application considering its low 
computation time. Based on the experimental results the pro-
posed solution outperforms the “profit collection” approaches, 
though as these considerations are clearly subjective. As we 
aim to serve tourist’s needs, our approach has been tested on a 
larger set of users and resulted in significantly better average 
evaluation comparing to “profit collection”.

As a future goal the algorithm is to be extended with the 
ability to handle time windows which is considered to be the 
next milestone towards a practically useful solution. By look-
ing over more hotels and appointing the one where the value of 
the objective function reaches its maximum for the P days tour, 
the present algorithm would be able to satisfy further touristic 
needs. Moreover the first clustering step with a method that 
identifies P vertices in sufficient distance from each other and 
builds trees including the hotel is to be replaced with a more 
effective method to further decrease computation time. 
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Appendix B
Results of the routing algorithm considering parameter 

values.

Appendix C
Results of the Welch-test comparing the two objective functions

test values

t-value 7,1172

p-value 1.745e-11

avg of new approach 8,1810

avg of conventional approach 6,3879

DF 208,44

95% conf int. 1,2964

95% conf int. 2,2898

Ho rejected
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