Preparation and Characterization of Biocompatible Electrospun Nanofiber Scaffolds
Abstract
Nanoscale fibers were prepared for the fabrication of scaffolds by using a strong electrostatic field on the polymer solution. Electrospinning is widely applied for production of drug delivery, tissue engineering, and regenerative medicine systems as well as biosensors and enzyme immobilization. Nanofibers, thanks to their high surface area to volume ratio, can also mimic the extracellular matrix, thus it has been recognized as a suitable technique for the fast fabrication of scaffolds. This article demonstrates the fabrication of several nanofibrous scaffolds from biopolymers such as polycaprolactone, poly(lactic acid), poly(lactide-co-glycolide), poly(lactide-co-caprolactone) and poly(hydroxybutyrate-co-hydroxy valerate). The characterization and comparison of the scaffolds were achieved based on the morphology and surface characteristic of the nanofibers. The samples showed hydrophobic characteristic, thus a plasma surface treatment was applied successfully to increase hydrophilicity and the effect of the treatment was evaluated based on the wettability and the change in elemental composition of the surface based on X-ray photoelectron spectroscopy.