Evaluating the Behaviour Factor of Medium Ductile SMRF Structures
Abstract
In seismic codes, the capacity of structures is calculated using capacity design procedure based on the concept of base shear. The critical parameter in this procedure is the behaviour factor (q-factor), which allows designing the structures at the ultimate limit state accounting for their ductility and reserve strength. In this paper, the q-factor is evaluated for medium ductile steel moment-resisting frames (SMRF) using pushover analysis. The influence of specific parameters, such as the stories number, the “Column/Beam” capacity and the local response of structural members, is studied. The results show that the most important parameter that affects the q-factor is the local response of first-storey columns, while the “Column/Beam” capacity has a less effect on this factor. Furthermore, it is observed that the q-factor value assigned to the studied frames in Eurocode-8 is systematically underestimated for low-rise frame, while the use of this value for high-rise frame is potentially unsafe.