Dynamic and Probabilistic Analysis of Shear Deformable Pipeline Resting on Two Parameter Foundation

Authors

  • Meriem Seguini
    Affiliation

    Department of Civil Engineering, Faculty of Architecture and Civil Engineering, Laboratory of Mechanic of Structures and Stability of Constructions LM2SC, University of Sciences and Technology of Oran Mohamed Boudiaf, Bp 1505 Elmenouar Oran, Algeria

  • Djamel Nedjar
    Affiliation

    Department of Civil Engineering, Faculty of Architecture and Civil Engineering, Laboratory of Mechanic of Structures and Stability of Constructions LM2SC, University of Sciences and Technology of Oran Mohamed Boudiaf, Bp 1505 Elmenouar Oran, Algeria

https://doi.org/10.3311/PPci.14927

Abstract

The nonlinear dynamic deterministic and probabilistic analysis of pipeline undergoing large deflections and resting on Winkler-Pasternak foundation have been done. Dynamic analogues of Euler Bernoulli and Timoshenko Von-Kármán type beam equations are used. The stochastic finite element approach based on the Vanmarcke method combined to Monte Carlo simulations has been used to solve the governing nonlinear equations of soil-pipe interaction. The influence of different parameters of random soil is has been analyzed and the obtained results are compared with those obtained from the literature. It is concluded from the present work that the spatial variability of the soil properties has a great impact on the seismic response of the pipe and the developed model which is based on the accurate method is efficient to determine the real response of the safe and economic pipeline.

Keywords:

nonlinear dynamic analysis, Euler Bernoulli beam, Timoshenko beam, shear deformation, spatial variability, Monte Carlo simulation, Winkler-Pasternack foundation

Published Online

2020-03-23

How to Cite

Seguini, M., Nedjar, D. “Dynamic and Probabilistic Analysis of Shear Deformable Pipeline Resting on Two Parameter Foundation”, Periodica Polytechnica Civil Engineering, 64(2), pp. 430–437, 2020. https://doi.org/10.3311/PPci.14927

Issue

Section

Research Article