An Improved Water Strider Algorithm for Optimal Design of Skeletal Structures
Abstract
Water Strider Algorithm (WSA) is a new metaheuristic method that is inspired by the life cycle of water striders. This study attempts to enhance the performance of the WSA in order to improve solution accuracy, reliability, and convergence speed. The new method, called improved water strider algorithm (IWSA), is tested in benchmark mathematical functions and some structural optimization problems. In the proposed algorithm, the standard WSA is augmented by utilizing an opposition-based learning method for the initial population as well as a mutation technique borrowed from the genetic algorithm. By employing Generalized Space Transformation Search (GSTS) as an opposition-based learning method, more promising regions of the search space are explored; therefore, the precision of the results is enhanced. By adding a mutation to the WSA, the method is helped to escape from local optimums which is essential for engineering design problems as well as complex mathematical optimization problems. First, the viability of IWSA is demonstrated by optimizing benchmark mathematical functions, and then it is applied to three skeletal structures to investigate its efficiency in structural design problems. IWSA is compared to the standard WSA and some other state-of-the-art metaheuristic algorithms. The results show the competence and robustness of the IWSA as an optimization algorithm in mathematical functions as well as in the field of structural optimization.