Estimation of Rheological Effects in Cantilever Concrete Bridges on the Basis of a Span's Deflection Line

Authors

  • Bartosz Pisarek
    Affiliation

    Wayss & Freytag Ingenieurbau AG, Eschoborner Landstrasse 130-132, 60489 Frankfurt am Main, Germany

  • Czeslaw Machelski
    Affiliation

    Department of Bridge and Raailway, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 41 (27*) budynek H-3, PWr, 50-370 Wroclaw, Poland

https://doi.org/10.3311/PPci.18151

Abstract

A characteristic feature of bridges as large span objects made using cantilever concreting technology are their excessive deflections, which are a result of rheological processes in concrete and pre-stressing steel. These deflections can be caused by the destruction of the material, e.g., concrete cracking, as well as the changing of the static scheme of the bridge structure, such as the subsidence of supports. The purpose of the work is to determine internal forces based on the deformation of a span. An algorithm for the correction of the deflection function, which is determined from geodetic measurements with a low accuracy, was proposed. It is characterized by a marked improvement in the results of calculations and, to a small extent, leads to the smoothing of the original measurement results. The algorithm is adapted to the analysis of a selected fragment of the structure, e.g., spans with the largest length and can be useful for monitoring bridge structures.

Keywords:

cantilever bridges, rheological effects, concrete structures, mathematical modeling, service life, stress analysis

Published Online

2021-12-21

How to Cite

Pisarek, B., Machelski, C. “Estimation of Rheological Effects in Cantilever Concrete Bridges on the Basis of a Span’s Deflection Line”, Periodica Polytechnica Civil Engineering, 66(1), pp. 228–234, 2022. https://doi.org/10.3311/PPci.18151

Issue

Section

Research Article