Modelling Marshall Design Test Results of Polypropylene Modified Asphalt by Genetic Programming Techniques
Abstract
Determining Marshall design test results is time consuming. If the researchers can obtain stability and flow values by mechanical testing, rest of the calculations will just be mathematical manipulations. Marshall stability and flow tests were carried out on specimens fabricated with dierent type of polypropylene fibers. It has been shown that addition of polypropylene fibers improved Marshall stabilities and Marshall quotient values in a considerable manner. Input variables in the developed genetic programming model use the physical properties of standard Marshall specimens such as polypropylene type, polypropylene percentage, bitumen percentage, specimen height, calculated unit weight, voids in mineral aggregate, voids filled with asphalt and air voids. Performance of the genetic programming model is quite satisfactory. Besides, to obtain main eects plot, a wide range of parametric studies have been performed.
The presented closed form solution will also help further researchers willing to perform similar studies, without carrying out destructive tests.