The Vibration of Tubular Beam Conveying Fluid with Variable Cross Section
Abstract
The dynamics and stability of flow induced vibration of flow conveying in pipes particularly in case of high velocity flow may lead to severe damage. Predicting the circular natural frequencies and critical fluid velocities is an important tool in design and prevent system failures. In this study transverse dynamic response of simply supported pipe with variable tubular cross sectional area carrying fluid with a constant flow rate is investigated. Euler Bernoulli's beam theory is used to model the pipe. Hamilton's principle will be used to produce the governing equation of motion for the system. The resulting partial differential equation is solved using Galerkin's technique. The impact of the flow velocity and non-uniform variable cross section on the natural frequencies of the system, critical flow velocity and system stability is presented.