Mechanical Behavior of Bone Cement under Dynamic Loading
Abstract
In orthopedic surgery and particularly in total hip arthroplasty, The fixation of the implant is generally made by the surgical cement, constituted essentially by polymer (PMMA), It is necessary to know the strengths applied to the prosthetic articulation during the current activities exercised by the patient in their life, to know the distribution of the constraints in the system (bone - cement - implant).
This study aims to analyze numerically using the finite element method, the effect of activities (dynamic loads) of the patient on the level and distribution of stresses generated in the components of total hip prosthesis. Five activities, the most frequently performed by the patient such as normal walking, the up and down stairs, sitting and up from chair, were selected for this study. For this purpose, a three-dimensional model of the total hip prosthesis has been developed. The results obtained from this model show that the total hip replacement components and especially the bone cement are more highly stressed during the process of climbing stairs. These excessively high loads can lead to damage of the cement and thus the loosening of the prosthesis.