Investigating the Performance of Non-standard Overcurrent Relay with Integration of Photovoltaic Distributed Generation in Power Distribution System
Abstract
The electricity demand is increasing daily, so the generation power should be raised to fulfil that demand. Renewable distributed generation-based photovoltaic sources are one of the best solutions to satisfy the Power Distribution System (PDS) as long as the fossil resources are on the verge of extinction. At the same time, connecting the Photovoltaic Distributed Generation (PVDG) to the PDS may cause issues with the system's technical parameters, such as a protection system based on overcurrent relays, unless they are optimally allocated. In this context, this paper will be devoted to optimally allocating multiple PVDG units in the PDS using the Slime Mould Algorithm (SMA), meanwhile studying the impact of that optimal integration on the overcurrent protection system that will be represented and based on various chosen non-standard overcurrent relays (NS-OCRs) which many researchers develop, and trying to figure out and pick up the best type that provides improvement to the protection system including the minor impact on the coordination time interval. To achieve the maximum and best of the requested results, a multi-objective function was proposed to be minimized based on the sum of total active power loss, total voltage deviation, and total operating time of the relays.