Experiences with Using Bayes Factors for Regression Analysis in Biostatistical Setting

Authors

  • Tamás Ferenci
    Affiliation
    Physiological Controls Group, John von Neumann Faculty of Informatics, Óbuda University, Hungary
  • Levente Kovács
    Affiliation
    Physiological Controls Group, John von Neumann Faculty of Informatics, Óbuda University, Hungary
https://doi.org/10.3311/PPee.9898

Abstract

Null hypothesis significance testing dominates the current biostatistical practice. However, this routine has many flaws, in particular p-values are very often misused and misinterpreted. Several solutions has been suggested to remedy this situation, the application of Bayes Factors being perhaps the most well-known. Nevertheless, even Bayes Factors are very seldom applied in medical research. This paper investigates the application of Bayes Factors in the analysis of a realistic medical problem using actual data from a representative US survey, and compares the results to those obtained with traditional means. Linear regression is used as an example as it is one of the most basic tools in biostatistics. The effect of sample size and sampling variation is investigated (with resampling) as well as the impact of the choice of prior. Results show that there is a strong relationship between p-values and Bayes Factors, especially for large samples. The application of Bayes Factors should be encouraged evenin spite of this, as the message they convey is much more instructive and scientifically correct than the current typical practice.

Keywords:

Bayes Factor, p-value, null hypothesis significance testing, linear regression model

Citation data from Crossref and Scopus

Published Online

2017-08-17

How to Cite

Ferenci, T., Kovács, L. “Experiences with Using Bayes Factors for Regression Analysis in Biostatistical Setting”, Periodica Polytechnica Electrical Engineering and Computer Science, 61(3), pp. 246–252, 2017. https://doi.org/10.3311/PPee.9898

Issue

Section

Articles